| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301 |
- // Copyright (C) 2004, 2009 International Business Machines and others.
- // All Rights Reserved.
- // This code is published under the Eclipse Public License.
- //
- // $Id: IpTNLP.hpp 2212 2013-04-14 14:51:52Z stefan $
- //
- // Authors: Carl Laird, Andreas Waechter IBM 2004-08-13
- #ifndef __IPTNLP_HPP__
- #define __IPTNLP_HPP__
- #include "IpUtils.hpp"
- #include "IpReferenced.hpp"
- #include "IpException.hpp"
- #include "IpAlgTypes.hpp"
- #include "IpReturnCodes.hpp"
- #include <map>
- namespace Ipopt
- {
- // forward declarations
- class IpoptData;
- class IpoptCalculatedQuantities;
- class IteratesVector;
- /** Base class for all NLP's that use standard triplet matrix form
- * and dense vectors. This is the standard base class for all
- * NLP's that use the standard triplet matrix form (as for Harwell
- * routines) and dense vectors. The class TNLPAdapter then converts
- * this interface to an interface that can be used directly by
- * ipopt.
- *
- * This interface presents the problem form:
- *
- * min f(x)
- *
- * s.t. gL <= g(x) <= gU
- *
- * xL <= x <= xU
- *
- * In order to specify an equality constraint, set gL_i = gU_i =
- * rhs. The value that indicates "infinity" for the bounds
- * (i.e. the variable or constraint has no lower bound (-infinity)
- * or upper bound (+infinity)) is set through the option
- * nlp_lower_bound_inf and nlp_upper_bound_inf. To indicate that a
- * variable has no upper or lower bound, set the bound to
- * -ipopt_inf or +ipopt_inf respectively
- */
- class TNLP : public ReferencedObject
- {
- public:
- /** Type of the constraints*/
- enum LinearityType
- {
- LINEAR/** Constraint/Variable is linear.*/,
- NON_LINEAR/**Constraint/Varaible is non-linear.*/
- };
- /**@name Constructors/Destructors */
- //@{
- TNLP()
- {}
- /** Default destructor */
- virtual ~TNLP()
- {}
- //@}
- DECLARE_STD_EXCEPTION(INVALID_TNLP);
- /**@name methods to gather information about the NLP */
- //@{
- /** overload this method to return the number of variables
- * and constraints, and the number of non-zeros in the jacobian and
- * the hessian. The index_style parameter lets you specify C or Fortran
- * style indexing for the sparse matrix iRow and jCol parameters.
- * C_STYLE is 0-based, and FORTRAN_STYLE is 1-based.
- */
- enum IndexStyleEnum { C_STYLE=0, FORTRAN_STYLE=1 };
- virtual bool get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,
- Index& nnz_h_lag, IndexStyleEnum& index_style)=0;
- typedef std::map<std::string, std::vector<std::string> > StringMetaDataMapType;
- typedef std::map<std::string, std::vector<Index> > IntegerMetaDataMapType;
- typedef std::map<std::string, std::vector<Number> > NumericMetaDataMapType;
- /** overload this method to return any meta data for
- * the variables and the constraints */
- virtual bool get_var_con_metadata(Index n,
- StringMetaDataMapType& var_string_md,
- IntegerMetaDataMapType& var_integer_md,
- NumericMetaDataMapType& var_numeric_md,
- Index m,
- StringMetaDataMapType& con_string_md,
- IntegerMetaDataMapType& con_integer_md,
- NumericMetaDataMapType& con_numeric_md)
- {
- return false;
- }
- /** overload this method to return the information about the bound
- * on the variables and constraints. The value that indicates
- * that a bound does not exist is specified in the parameters
- * nlp_lower_bound_inf and nlp_upper_bound_inf. By default,
- * nlp_lower_bound_inf is -1e19 and nlp_upper_bound_inf is
- * 1e19. (see TNLPAdapter) */
- virtual bool get_bounds_info(Index n, Number* x_l, Number* x_u,
- Index m, Number* g_l, Number* g_u)=0;
- /** overload this method to return scaling parameters. This is
- * only called if the options are set to retrieve user scaling.
- * There, use_x_scaling (or use_g_scaling) should get set to true
- * only if the variables (or constraints) are to be scaled. This
- * method should return true only if the scaling parameters could
- * be provided.
- */
- virtual bool get_scaling_parameters(Number& obj_scaling,
- bool& use_x_scaling, Index n,
- Number* x_scaling,
- bool& use_g_scaling, Index m,
- Number* g_scaling)
- {
- return false;
- }
- /** overload this method to return the variables linearity
- * (TNLP::LINEAR or TNLP::NON_LINEAR). The var_types
- * array has been allocated with length at least n. (default implementation
- * just return false and does not fill the array).*/
- virtual bool get_variables_linearity(Index n, LinearityType* var_types)
- {
- return false;
- }
- /** overload this method to return the constraint linearity.
- * array has been allocated with length at least n. (default implementation
- * just return false and does not fill the array).*/
- virtual bool get_constraints_linearity(Index m, LinearityType* const_types)
- {
- return false;
- }
- /** overload this method to return the starting point. The bool
- * variables indicate whether the algorithm wants you to
- * initialize x, z_L/z_u, and lambda, respectively. If, for some
- * reason, the algorithm wants you to initialize these and you
- * cannot, return false, which will cause Ipopt to stop. You
- * will have to run Ipopt with different options then.
- */
- virtual bool get_starting_point(Index n, bool init_x, Number* x,
- bool init_z, Number* z_L, Number* z_U,
- Index m, bool init_lambda,
- Number* lambda)=0;
- /** overload this method to provide an Ipopt iterate (already in
- * the form Ipopt requires it internally) for a warm start.
- * Since this is only for expert users, a default dummy
- * implementation is provided and returns false. */
- virtual bool get_warm_start_iterate(IteratesVector& warm_start_iterate)
- {
- return false;
- }
- /** overload this method to return the value of the objective function */
- virtual bool eval_f(Index n, const Number* x, bool new_x,
- Number& obj_value)=0;
- /** overload this method to return the vector of the gradient of
- * the objective w.r.t. x */
- virtual bool eval_grad_f(Index n, const Number* x, bool new_x,
- Number* grad_f)=0;
- /** overload this method to return the vector of constraint values */
- virtual bool eval_g(Index n, const Number* x, bool new_x,
- Index m, Number* g)=0;
- /** overload this method to return the jacobian of the
- * constraints. The vectors iRow and jCol only need to be set
- * once. The first call is used to set the structure only (iRow
- * and jCol will be non-NULL, and values will be NULL) For
- * subsequent calls, iRow and jCol will be NULL. */
- virtual bool eval_jac_g(Index n, const Number* x, bool new_x,
- Index m, Index nele_jac, Index* iRow,
- Index *jCol, Number* values)=0;
- /** overload this method to return the hessian of the
- * lagrangian. The vectors iRow and jCol only need to be set once
- * (during the first call). The first call is used to set the
- * structure only (iRow and jCol will be non-NULL, and values
- * will be NULL) For subsequent calls, iRow and jCol will be
- * NULL. This matrix is symmetric - specify the lower diagonal
- * only. A default implementation is provided, in case the user
- * wants to se quasi-Newton approximations to estimate the second
- * derivatives and doesn't not neet to implement this method. */
- virtual bool eval_h(Index n, const Number* x, bool new_x,
- Number obj_factor, Index m, const Number* lambda,
- bool new_lambda, Index nele_hess,
- Index* iRow, Index* jCol, Number* values)
- {
- return false;
- }
- //@}
- /** @name Solution Methods */
- //@{
- /** This method is called when the algorithm is complete so the TNLP can store/write the solution */
- virtual void finalize_solution(SolverReturn status,
- Index n, const Number* x, const Number* z_L, const Number* z_U,
- Index m, const Number* g, const Number* lambda,
- Number obj_value,
- const IpoptData* ip_data,
- IpoptCalculatedQuantities* ip_cq)=0;
- /** This method is called just before finalize_solution. With
- * this method, the algorithm returns any metadata collected
- * during its run, including the metadata provided by the user
- * with the above get_var_con_metadata. Each metadata can be of
- * type string, integer, and numeric. It can be associated to
- * either the variables or the constraints. The metadata that
- * was associated with the primal variable vector is stored in
- * var_..._md. The metadata associated with the constraint
- * multipliers is stored in con_..._md. The metadata associated
- * with the bound multipliers is stored in var_..._md, with the
- * suffixes "_z_L", and "_z_U", denoting lower and upper
- * bounds. */
- virtual void finalize_metadata(Index n,
- const StringMetaDataMapType& var_string_md,
- const IntegerMetaDataMapType& var_integer_md,
- const NumericMetaDataMapType& var_numeric_md,
- Index m,
- const StringMetaDataMapType& con_string_md,
- const IntegerMetaDataMapType& con_integer_md,
- const NumericMetaDataMapType& con_numeric_md)
- {}
- /** Intermediate Callback method for the user. Providing dummy
- * default implementation. For details see IntermediateCallBack
- * in IpNLP.hpp. */
- virtual bool intermediate_callback(AlgorithmMode mode,
- Index iter, Number obj_value,
- Number inf_pr, Number inf_du,
- Number mu, Number d_norm,
- Number regularization_size,
- Number alpha_du, Number alpha_pr,
- Index ls_trials,
- const IpoptData* ip_data,
- IpoptCalculatedQuantities* ip_cq)
- {
- return true;
- }
- //@}
- /** @name Methods for quasi-Newton approximation. If the second
- * derivatives are approximated by Ipopt, it is better to do this
- * only in the space of nonlinear variables. The following
- * methods are call by Ipopt if the quasi-Newton approximation is
- * selected. If -1 is returned as number of nonlinear variables,
- * Ipopt assumes that all variables are nonlinear. Otherwise, it
- * calls get_list_of_nonlinear_variables with an array into which
- * the indices of the nonlinear variables should be written - the
- * array has the lengths num_nonlin_vars, which is identical with
- * the return value of get_number_of_nonlinear_variables(). It
- * is assumed that the indices are counted starting with 1 in the
- * FORTRAN_STYLE, and 0 for the C_STYLE. */
- //@{
- virtual Index get_number_of_nonlinear_variables()
- {
- return -1;
- }
- virtual bool get_list_of_nonlinear_variables(Index num_nonlin_vars,
- Index* pos_nonlin_vars)
- {
- return false;
- }
- //@}
- private:
- /**@name Default Compiler Generated Methods
- * (Hidden to avoid implicit creation/calling).
- * These methods are not implemented and
- * we do not want the compiler to implement
- * them for us, so we declare them private
- * and do not define them. This ensures that
- * they will not be implicitly created/called. */
- //@{
- /** Default Constructor */
- //TNLP();
- /** Copy Constructor */
- TNLP(const TNLP&);
- /** Overloaded Equals Operator */
- void operator=(const TNLP&);
- //@}
- };
- } // namespace Ipopt
- #endif
|