Jelajahi Sumber

adds codahale to vendor

bergquist 8 tahun lalu
induk
melakukan
e84ff24833

+ 21 - 0
vendor/github.com/codahale/hdrhistogram/LICENSE

@@ -0,0 +1,21 @@
+The MIT License (MIT)
+
+Copyright (c) 2014 Coda Hale
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+THE SOFTWARE.

+ 15 - 0
vendor/github.com/codahale/hdrhistogram/README.md

@@ -0,0 +1,15 @@
+hdrhistogram
+============
+
+[![Build Status](https://travis-ci.org/codahale/hdrhistogram.png?branch=master)](https://travis-ci.org/codahale/hdrhistogram)
+
+A pure Go implementation of the [HDR Histogram](https://github.com/HdrHistogram/HdrHistogram).
+
+> A Histogram that supports recording and analyzing sampled data value counts
+> across a configurable integer value range with configurable value precision
+> within the range. Value precision is expressed as the number of significant
+> digits in the value recording, and provides control over value quantization
+> behavior across the value range and the subsequent value resolution at any
+> given level.
+
+For documentation, check [godoc](http://godoc.org/github.com/codahale/hdrhistogram).

+ 564 - 0
vendor/github.com/codahale/hdrhistogram/hdr.go

@@ -0,0 +1,564 @@
+// Package hdrhistogram provides an implementation of Gil Tene's HDR Histogram
+// data structure. The HDR Histogram allows for fast and accurate analysis of
+// the extreme ranges of data with non-normal distributions, like latency.
+package hdrhistogram
+
+import (
+	"fmt"
+	"math"
+)
+
+// A Bracket is a part of a cumulative distribution.
+type Bracket struct {
+	Quantile       float64
+	Count, ValueAt int64
+}
+
+// A Snapshot is an exported view of a Histogram, useful for serializing them.
+// A Histogram can be constructed from it by passing it to Import.
+type Snapshot struct {
+	LowestTrackableValue  int64
+	HighestTrackableValue int64
+	SignificantFigures    int64
+	Counts                []int64
+}
+
+// A Histogram is a lossy data structure used to record the distribution of
+// non-normally distributed data (like latency) with a high degree of accuracy
+// and a bounded degree of precision.
+type Histogram struct {
+	lowestTrackableValue        int64
+	highestTrackableValue       int64
+	unitMagnitude               int64
+	significantFigures          int64
+	subBucketHalfCountMagnitude int32
+	subBucketHalfCount          int32
+	subBucketMask               int64
+	subBucketCount              int32
+	bucketCount                 int32
+	countsLen                   int32
+	totalCount                  int64
+	counts                      []int64
+}
+
+// New returns a new Histogram instance capable of tracking values in the given
+// range and with the given amount of precision.
+func New(minValue, maxValue int64, sigfigs int) *Histogram {
+	if sigfigs < 1 || 5 < sigfigs {
+		panic(fmt.Errorf("sigfigs must be [1,5] (was %d)", sigfigs))
+	}
+
+	largestValueWithSingleUnitResolution := 2 * math.Pow10(sigfigs)
+	subBucketCountMagnitude := int32(math.Ceil(math.Log2(float64(largestValueWithSingleUnitResolution))))
+
+	subBucketHalfCountMagnitude := subBucketCountMagnitude
+	if subBucketHalfCountMagnitude < 1 {
+		subBucketHalfCountMagnitude = 1
+	}
+	subBucketHalfCountMagnitude--
+
+	unitMagnitude := int32(math.Floor(math.Log2(float64(minValue))))
+	if unitMagnitude < 0 {
+		unitMagnitude = 0
+	}
+
+	subBucketCount := int32(math.Pow(2, float64(subBucketHalfCountMagnitude)+1))
+
+	subBucketHalfCount := subBucketCount / 2
+	subBucketMask := int64(subBucketCount-1) << uint(unitMagnitude)
+
+	// determine exponent range needed to support the trackable value with no
+	// overflow:
+	smallestUntrackableValue := int64(subBucketCount) << uint(unitMagnitude)
+	bucketsNeeded := int32(1)
+	for smallestUntrackableValue < maxValue {
+		smallestUntrackableValue <<= 1
+		bucketsNeeded++
+	}
+
+	bucketCount := bucketsNeeded
+	countsLen := (bucketCount + 1) * (subBucketCount / 2)
+
+	return &Histogram{
+		lowestTrackableValue:        minValue,
+		highestTrackableValue:       maxValue,
+		unitMagnitude:               int64(unitMagnitude),
+		significantFigures:          int64(sigfigs),
+		subBucketHalfCountMagnitude: subBucketHalfCountMagnitude,
+		subBucketHalfCount:          subBucketHalfCount,
+		subBucketMask:               subBucketMask,
+		subBucketCount:              subBucketCount,
+		bucketCount:                 bucketCount,
+		countsLen:                   countsLen,
+		totalCount:                  0,
+		counts:                      make([]int64, countsLen),
+	}
+}
+
+// ByteSize returns an estimate of the amount of memory allocated to the
+// histogram in bytes.
+//
+// N.B.: This does not take into account the overhead for slices, which are
+// small, constant, and specific to the compiler version.
+func (h *Histogram) ByteSize() int {
+	return 6*8 + 5*4 + len(h.counts)*8
+}
+
+// Merge merges the data stored in the given histogram with the receiver,
+// returning the number of recorded values which had to be dropped.
+func (h *Histogram) Merge(from *Histogram) (dropped int64) {
+	i := from.rIterator()
+	for i.next() {
+		v := i.valueFromIdx
+		c := i.countAtIdx
+
+		if h.RecordValues(v, c) != nil {
+			dropped += c
+		}
+	}
+
+	return
+}
+
+// TotalCount returns total number of values recorded.
+func (h *Histogram) TotalCount() int64 {
+	return h.totalCount
+}
+
+// Max returns the approximate maximum recorded value.
+func (h *Histogram) Max() int64 {
+	var max int64
+	i := h.iterator()
+	for i.next() {
+		if i.countAtIdx != 0 {
+			max = i.highestEquivalentValue
+		}
+	}
+	return h.highestEquivalentValue(max)
+}
+
+// Min returns the approximate minimum recorded value.
+func (h *Histogram) Min() int64 {
+	var min int64
+	i := h.iterator()
+	for i.next() {
+		if i.countAtIdx != 0 && min == 0 {
+			min = i.highestEquivalentValue
+			break
+		}
+	}
+	return h.lowestEquivalentValue(min)
+}
+
+// Mean returns the approximate arithmetic mean of the recorded values.
+func (h *Histogram) Mean() float64 {
+	if h.totalCount == 0 {
+		return 0
+	}
+	var total int64
+	i := h.iterator()
+	for i.next() {
+		if i.countAtIdx != 0 {
+			total += i.countAtIdx * h.medianEquivalentValue(i.valueFromIdx)
+		}
+	}
+	return float64(total) / float64(h.totalCount)
+}
+
+// StdDev returns the approximate standard deviation of the recorded values.
+func (h *Histogram) StdDev() float64 {
+	if h.totalCount == 0 {
+		return 0
+	}
+
+	mean := h.Mean()
+	geometricDevTotal := 0.0
+
+	i := h.iterator()
+	for i.next() {
+		if i.countAtIdx != 0 {
+			dev := float64(h.medianEquivalentValue(i.valueFromIdx)) - mean
+			geometricDevTotal += (dev * dev) * float64(i.countAtIdx)
+		}
+	}
+
+	return math.Sqrt(geometricDevTotal / float64(h.totalCount))
+}
+
+// Reset deletes all recorded values and restores the histogram to its original
+// state.
+func (h *Histogram) Reset() {
+	h.totalCount = 0
+	for i := range h.counts {
+		h.counts[i] = 0
+	}
+}
+
+// RecordValue records the given value, returning an error if the value is out
+// of range.
+func (h *Histogram) RecordValue(v int64) error {
+	return h.RecordValues(v, 1)
+}
+
+// RecordCorrectedValue records the given value, correcting for stalls in the
+// recording process. This only works for processes which are recording values
+// at an expected interval (e.g., doing jitter analysis). Processes which are
+// recording ad-hoc values (e.g., latency for incoming requests) can't take
+// advantage of this.
+func (h *Histogram) RecordCorrectedValue(v, expectedInterval int64) error {
+	if err := h.RecordValue(v); err != nil {
+		return err
+	}
+
+	if expectedInterval <= 0 || v <= expectedInterval {
+		return nil
+	}
+
+	missingValue := v - expectedInterval
+	for missingValue >= expectedInterval {
+		if err := h.RecordValue(missingValue); err != nil {
+			return err
+		}
+		missingValue -= expectedInterval
+	}
+
+	return nil
+}
+
+// RecordValues records n occurrences of the given value, returning an error if
+// the value is out of range.
+func (h *Histogram) RecordValues(v, n int64) error {
+	idx := h.countsIndexFor(v)
+	if idx < 0 || int(h.countsLen) <= idx {
+		return fmt.Errorf("value %d is too large to be recorded", v)
+	}
+	h.counts[idx] += n
+	h.totalCount += n
+
+	return nil
+}
+
+// ValueAtQuantile returns the recorded value at the given quantile (0..100).
+func (h *Histogram) ValueAtQuantile(q float64) int64 {
+	if q > 100 {
+		q = 100
+	}
+
+	total := int64(0)
+	countAtPercentile := int64(((q / 100) * float64(h.totalCount)) + 0.5)
+
+	i := h.iterator()
+	for i.next() {
+		total += i.countAtIdx
+		if total >= countAtPercentile {
+			return h.highestEquivalentValue(i.valueFromIdx)
+		}
+	}
+
+	return 0
+}
+
+// CumulativeDistribution returns an ordered list of brackets of the
+// distribution of recorded values.
+func (h *Histogram) CumulativeDistribution() []Bracket {
+	var result []Bracket
+
+	i := h.pIterator(1)
+	for i.next() {
+		result = append(result, Bracket{
+			Quantile: i.percentile,
+			Count:    i.countToIdx,
+			ValueAt:  i.highestEquivalentValue,
+		})
+	}
+
+	return result
+}
+
+// SignificantFigures returns the significant figures used to create the
+// histogram
+func (h *Histogram) SignificantFigures() int64 {
+	return h.significantFigures
+}
+
+// LowestTrackableValue returns the lower bound on values that will be added
+// to the histogram
+func (h *Histogram) LowestTrackableValue() int64 {
+	return h.lowestTrackableValue
+}
+
+// HighestTrackableValue returns the upper bound on values that will be added
+// to the histogram
+func (h *Histogram) HighestTrackableValue() int64 {
+	return h.highestTrackableValue
+}
+
+// Histogram bar for plotting
+type Bar struct {
+	From, To, Count int64
+}
+
+// Pretty print as csv for easy plotting
+func (b Bar) String() string {
+	return fmt.Sprintf("%v, %v, %v\n", b.From, b.To, b.Count)
+}
+
+// Distribution returns an ordered list of bars of the
+// distribution of recorded values, counts can be normalized to a probability
+func (h *Histogram) Distribution() (result []Bar) {
+	i := h.iterator()
+	for i.next() {
+		result = append(result, Bar{
+			Count: i.countAtIdx,
+			From:  h.lowestEquivalentValue(i.valueFromIdx),
+			To:    i.highestEquivalentValue,
+		})
+	}
+
+	return result
+}
+
+// Equals returns true if the two Histograms are equivalent, false if not.
+func (h *Histogram) Equals(other *Histogram) bool {
+	switch {
+	case
+		h.lowestTrackableValue != other.lowestTrackableValue,
+		h.highestTrackableValue != other.highestTrackableValue,
+		h.unitMagnitude != other.unitMagnitude,
+		h.significantFigures != other.significantFigures,
+		h.subBucketHalfCountMagnitude != other.subBucketHalfCountMagnitude,
+		h.subBucketHalfCount != other.subBucketHalfCount,
+		h.subBucketMask != other.subBucketMask,
+		h.subBucketCount != other.subBucketCount,
+		h.bucketCount != other.bucketCount,
+		h.countsLen != other.countsLen,
+		h.totalCount != other.totalCount:
+		return false
+	default:
+		for i, c := range h.counts {
+			if c != other.counts[i] {
+				return false
+			}
+		}
+	}
+	return true
+}
+
+// Export returns a snapshot view of the Histogram. This can be later passed to
+// Import to construct a new Histogram with the same state.
+func (h *Histogram) Export() *Snapshot {
+	return &Snapshot{
+		LowestTrackableValue:  h.lowestTrackableValue,
+		HighestTrackableValue: h.highestTrackableValue,
+		SignificantFigures:    h.significantFigures,
+		Counts:                append([]int64(nil), h.counts...), // copy
+	}
+}
+
+// Import returns a new Histogram populated from the Snapshot data (which the
+// caller must stop accessing).
+func Import(s *Snapshot) *Histogram {
+	h := New(s.LowestTrackableValue, s.HighestTrackableValue, int(s.SignificantFigures))
+	h.counts = s.Counts
+	totalCount := int64(0)
+	for i := int32(0); i < h.countsLen; i++ {
+		countAtIndex := h.counts[i]
+		if countAtIndex > 0 {
+			totalCount += countAtIndex
+		}
+	}
+	h.totalCount = totalCount
+	return h
+}
+
+func (h *Histogram) iterator() *iterator {
+	return &iterator{
+		h:            h,
+		subBucketIdx: -1,
+	}
+}
+
+func (h *Histogram) rIterator() *rIterator {
+	return &rIterator{
+		iterator: iterator{
+			h:            h,
+			subBucketIdx: -1,
+		},
+	}
+}
+
+func (h *Histogram) pIterator(ticksPerHalfDistance int32) *pIterator {
+	return &pIterator{
+		iterator: iterator{
+			h:            h,
+			subBucketIdx: -1,
+		},
+		ticksPerHalfDistance: ticksPerHalfDistance,
+	}
+}
+
+func (h *Histogram) sizeOfEquivalentValueRange(v int64) int64 {
+	bucketIdx := h.getBucketIndex(v)
+	subBucketIdx := h.getSubBucketIdx(v, bucketIdx)
+	adjustedBucket := bucketIdx
+	if subBucketIdx >= h.subBucketCount {
+		adjustedBucket++
+	}
+	return int64(1) << uint(h.unitMagnitude+int64(adjustedBucket))
+}
+
+func (h *Histogram) valueFromIndex(bucketIdx, subBucketIdx int32) int64 {
+	return int64(subBucketIdx) << uint(int64(bucketIdx)+h.unitMagnitude)
+}
+
+func (h *Histogram) lowestEquivalentValue(v int64) int64 {
+	bucketIdx := h.getBucketIndex(v)
+	subBucketIdx := h.getSubBucketIdx(v, bucketIdx)
+	return h.valueFromIndex(bucketIdx, subBucketIdx)
+}
+
+func (h *Histogram) nextNonEquivalentValue(v int64) int64 {
+	return h.lowestEquivalentValue(v) + h.sizeOfEquivalentValueRange(v)
+}
+
+func (h *Histogram) highestEquivalentValue(v int64) int64 {
+	return h.nextNonEquivalentValue(v) - 1
+}
+
+func (h *Histogram) medianEquivalentValue(v int64) int64 {
+	return h.lowestEquivalentValue(v) + (h.sizeOfEquivalentValueRange(v) >> 1)
+}
+
+func (h *Histogram) getCountAtIndex(bucketIdx, subBucketIdx int32) int64 {
+	return h.counts[h.countsIndex(bucketIdx, subBucketIdx)]
+}
+
+func (h *Histogram) countsIndex(bucketIdx, subBucketIdx int32) int32 {
+	bucketBaseIdx := (bucketIdx + 1) << uint(h.subBucketHalfCountMagnitude)
+	offsetInBucket := subBucketIdx - h.subBucketHalfCount
+	return bucketBaseIdx + offsetInBucket
+}
+
+func (h *Histogram) getBucketIndex(v int64) int32 {
+	pow2Ceiling := bitLen(v | h.subBucketMask)
+	return int32(pow2Ceiling - int64(h.unitMagnitude) -
+		int64(h.subBucketHalfCountMagnitude+1))
+}
+
+func (h *Histogram) getSubBucketIdx(v int64, idx int32) int32 {
+	return int32(v >> uint(int64(idx)+int64(h.unitMagnitude)))
+}
+
+func (h *Histogram) countsIndexFor(v int64) int {
+	bucketIdx := h.getBucketIndex(v)
+	subBucketIdx := h.getSubBucketIdx(v, bucketIdx)
+	return int(h.countsIndex(bucketIdx, subBucketIdx))
+}
+
+type iterator struct {
+	h                                    *Histogram
+	bucketIdx, subBucketIdx              int32
+	countAtIdx, countToIdx, valueFromIdx int64
+	highestEquivalentValue               int64
+}
+
+func (i *iterator) next() bool {
+	if i.countToIdx >= i.h.totalCount {
+		return false
+	}
+
+	// increment bucket
+	i.subBucketIdx++
+	if i.subBucketIdx >= i.h.subBucketCount {
+		i.subBucketIdx = i.h.subBucketHalfCount
+		i.bucketIdx++
+	}
+
+	if i.bucketIdx >= i.h.bucketCount {
+		return false
+	}
+
+	i.countAtIdx = i.h.getCountAtIndex(i.bucketIdx, i.subBucketIdx)
+	i.countToIdx += i.countAtIdx
+	i.valueFromIdx = i.h.valueFromIndex(i.bucketIdx, i.subBucketIdx)
+	i.highestEquivalentValue = i.h.highestEquivalentValue(i.valueFromIdx)
+
+	return true
+}
+
+type rIterator struct {
+	iterator
+	countAddedThisStep int64
+}
+
+func (r *rIterator) next() bool {
+	for r.iterator.next() {
+		if r.countAtIdx != 0 {
+			r.countAddedThisStep = r.countAtIdx
+			return true
+		}
+	}
+	return false
+}
+
+type pIterator struct {
+	iterator
+	seenLastValue          bool
+	ticksPerHalfDistance   int32
+	percentileToIteratorTo float64
+	percentile             float64
+}
+
+func (p *pIterator) next() bool {
+	if !(p.countToIdx < p.h.totalCount) {
+		if p.seenLastValue {
+			return false
+		}
+
+		p.seenLastValue = true
+		p.percentile = 100
+
+		return true
+	}
+
+	if p.subBucketIdx == -1 && !p.iterator.next() {
+		return false
+	}
+
+	var done = false
+	for !done {
+		currentPercentile := (100.0 * float64(p.countToIdx)) / float64(p.h.totalCount)
+		if p.countAtIdx != 0 && p.percentileToIteratorTo <= currentPercentile {
+			p.percentile = p.percentileToIteratorTo
+			halfDistance := math.Trunc(math.Pow(2, math.Trunc(math.Log2(100.0/(100.0-p.percentileToIteratorTo)))+1))
+			percentileReportingTicks := float64(p.ticksPerHalfDistance) * halfDistance
+			p.percentileToIteratorTo += 100.0 / percentileReportingTicks
+			return true
+		}
+		done = !p.iterator.next()
+	}
+
+	return true
+}
+
+func bitLen(x int64) (n int64) {
+	for ; x >= 0x8000; x >>= 16 {
+		n += 16
+	}
+	if x >= 0x80 {
+		x >>= 8
+		n += 8
+	}
+	if x >= 0x8 {
+		x >>= 4
+		n += 4
+	}
+	if x >= 0x2 {
+		x >>= 2
+		n += 2
+	}
+	if x >= 0x1 {
+		n++
+	}
+	return
+}

+ 45 - 0
vendor/github.com/codahale/hdrhistogram/window.go

@@ -0,0 +1,45 @@
+package hdrhistogram
+
+// A WindowedHistogram combines histograms to provide windowed statistics.
+type WindowedHistogram struct {
+	idx int
+	h   []Histogram
+	m   *Histogram
+
+	Current *Histogram
+}
+
+// NewWindowed creates a new WindowedHistogram with N underlying histograms with
+// the given parameters.
+func NewWindowed(n int, minValue, maxValue int64, sigfigs int) *WindowedHistogram {
+	w := WindowedHistogram{
+		idx: -1,
+		h:   make([]Histogram, n),
+		m:   New(minValue, maxValue, sigfigs),
+	}
+
+	for i := range w.h {
+		w.h[i] = *New(minValue, maxValue, sigfigs)
+	}
+	w.Rotate()
+
+	return &w
+}
+
+// Merge returns a histogram which includes the recorded values from all the
+// sections of the window.
+func (w *WindowedHistogram) Merge() *Histogram {
+	w.m.Reset()
+	for _, h := range w.h {
+		w.m.Merge(&h)
+	}
+	return w.m
+}
+
+// Rotate resets the oldest histogram and rotates it to be used as the current
+// histogram.
+func (w *WindowedHistogram) Rotate() {
+	w.idx++
+	w.Current = &w.h[w.idx%len(w.h)]
+	w.Current.Reset()
+}