import _ from 'lodash'; import flatten from '../../../core/utils/flatten'; import TimeSeries from '../../../core/time_series2'; import TableModel from '../../../core/table_model'; var transformers = {}; transformers['timeseries_to_rows'] = { description: 'Time series to rows', getColumns: function() { return []; }, transform: function(data, panel, model) { model.columns = [ {text: 'Time', type: 'date'}, {text: 'Metric'}, {text: 'Value'}, ]; for (var i = 0; i < data.length; i++) { var series = data[i]; for (var y = 0; y < series.datapoints.length; y++) { var dp = series.datapoints[y]; model.rows.push([dp[1], series.target, dp[0]]); } } }, }; transformers['timeseries_to_columns'] = { description: 'Time series to columns', getColumns: function() { return []; }, transform: function(data, panel, model) { model.columns.push({text: 'Time', type: 'date'}); // group by time var points = {}; for (let i = 0; i < data.length; i++) { var series = data[i]; model.columns.push({text: series.target}); for (var y = 0; y < series.datapoints.length; y++) { var dp = series.datapoints[y]; var timeKey = dp[1].toString(); if (!points[timeKey]) { points[timeKey] = {time: dp[1]}; points[timeKey][i] = dp[0]; } else { points[timeKey][i] = dp[0]; } } } for (var time in points) { var point = points[time]; var values = [point.time]; for (let i = 0; i < data.length; i++) { var value = point[i]; values.push(value); } model.rows.push(values); } } }; transformers['timeseries_aggregations'] = { description: 'Time series aggregations', getColumns: function() { return [ {text: 'Avg', value: 'avg'}, {text: 'Min', value: 'min'}, {text: 'Max', value: 'max'}, {text: 'Total', value: 'total'}, {text: 'Current', value: 'current'}, {text: 'Count', value: 'count'}, ]; }, transform: function(data, panel, model) { var i, y; model.columns.push({text: 'Metric'}); for (i = 0; i < panel.columns.length; i++) { model.columns.push({text: panel.columns[i].text}); } for (i = 0; i < data.length; i++) { var series = new TimeSeries({ datapoints: data[i].datapoints, alias: data[i].target, }); series.getFlotPairs('connected'); var cells = [series.alias]; for (y = 0; y < panel.columns.length; y++) { cells.push(series.stats[panel.columns[y].value]); } model.rows.push(cells); } } }; transformers['annotations'] = { description: 'Annotations', getColumns: function() { return []; }, transform: function(data, panel, model) { model.columns.push({text: 'Time', type: 'date'}); model.columns.push({text: 'Title'}); model.columns.push({text: 'Text'}); model.columns.push({text: 'Tags'}); if (!data || !data.annotations || data.annotations.length === 0) { return; } for (var i = 0; i < data.annotations.length; i++) { var evt = data.annotations[i]; model.rows.push([evt.time, evt.title, evt.text, evt.tags]); } } }; transformers['table'] = { description: 'Table', getColumns: function(data) { if (!data || data.length === 0) { return []; } // Single query returns data columns as is if (data.length === 1) { return [...data[0].columns]; } // Track column indexes: name -> index const columnNames = {}; // Union of all columns const columns = data.reduce((acc, d, i) => { d.columns.forEach((col, j) => { const { text } = col; if (columnNames[text] === undefined) { columnNames[text] = acc.length; acc.push(col); } }); return acc; }, []); return columns; }, transform: function(data, panel, model) { if (!data || data.length === 0) { return; } const noTableIndex = _.findIndex(data, d => d.type !== 'table'); if (noTableIndex > -1) { throw {message: `Result of query #${String.fromCharCode(65 + noTableIndex)} is not in table format, try using another transform.`}; } // Single query returns data columns and rows as is if (data.length === 1) { model.columns = [...data[0].columns]; model.rows = [...data[0].rows]; return; } // Track column indexes: name -> index const columnNames = {}; const columnIndexes = []; // Union of all non-value columns const columns = data.reduce((acc, d, i) => { const indexes = []; d.columns.forEach((col, j) => { const { text } = col; if (columnNames[text] === undefined) { columnNames[text] = acc.length; acc.push(col); } indexes[j] = columnNames[text]; }); columnIndexes.push(indexes); return acc; }, []); model.columns = columns; // Adjust rows to new column indexes let rows = data.reduce((acc, d, i) => { const indexes = columnIndexes[i]; d.rows.forEach((r, j) => { const alteredRow = []; indexes.forEach((to, from) => { alteredRow[to] = r[from]; }); acc.push(alteredRow); }); return acc; }, []); // Merge rows that have same values for columns const mergedRows = {}; rows = rows.reduce((acc, row, rowIndex) => { if (!mergedRows[rowIndex]) { let offset = rowIndex + 1; while (offset < rows.length) { // Find next row that has the same field values unless the respective field is undefined const match = _.findIndex(rows, (otherRow) => { let fieldsAreTheSame = true; let foundFieldToMatch = false; for (let columnIndex = 0; columnIndex < columns.length; columnIndex++) { if (row[columnIndex] !== undefined && otherRow[columnIndex] !== undefined) { if (row[columnIndex] !== otherRow[columnIndex]) { fieldsAreTheSame = false; } } else if (row[columnIndex] === undefined || otherRow[columnIndex] === undefined) { foundFieldToMatch = true; } if (!fieldsAreTheSame) { break; } } return fieldsAreTheSame && foundFieldToMatch; }, offset); if (match > -1) { const matchedRow = rows[match]; // Merge values into current row for (let columnIndex = 0; columnIndex < columns.length; columnIndex++) { if (row[columnIndex] === undefined && matchedRow[columnIndex] !== undefined) { row[columnIndex] = matchedRow[columnIndex]; } } mergedRows[match] = matchedRow; // Keep looking for more rows to merge offset = match + 1; } else { break; } } acc.push(row); } return acc; }, []); model.rows = rows; } }; transformers['json'] = { description: 'JSON Data', getColumns: function(data) { if (!data || data.length === 0) { return []; } var names: any = {}; for (var i = 0; i < data.length; i++) { var series = data[i]; if (series.type !== 'docs') { continue; } // only look at 100 docs var maxDocs = Math.min(series.datapoints.length, 100); for (var y = 0; y < maxDocs; y++) { var doc = series.datapoints[y]; var flattened = flatten(doc, null); for (var propName in flattened) { names[propName] = true; } } } return _.map(names, function(value, key) { return {text: key, value: key}; }); }, transform: function(data, panel, model) { var i, y, z; for (let column of panel.columns) { var tableCol: any = {text: column.text}; // if filterable data then set columns to filterable if (data.length > 0 && data[0].filterable) { tableCol.filterable = true; } model.columns.push(tableCol); } if (model.columns.length === 0) { model.columns.push({text: 'JSON'}); } for (i = 0; i < data.length; i++) { var series = data[i]; for (y = 0; y < series.datapoints.length; y++) { var dp = series.datapoints[y]; var values = []; if (_.isObject(dp) && panel.columns.length > 0) { var flattened = flatten(dp, null); for (z = 0; z < panel.columns.length; z++) { values.push(flattened[panel.columns[z].value]); } } else { values.push(JSON.stringify(dp)); } model.rows.push(values); } } } }; function transformDataToTable(data, panel) { var model = new TableModel(); if (!data || data.length === 0) { return model; } var transformer = transformers[panel.transform]; if (!transformer) { throw {message: 'Transformer ' + panel.transform + ' not found'}; } transformer.transform(data, panel, model); return model; } export {transformers, transformDataToTable};