transformers.ts 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260
  1. import _ from 'lodash';
  2. import flatten from 'app/core/utils/flatten';
  3. import TimeSeries from 'app/core/time_series2';
  4. import TableModel, { mergeTablesIntoModel } from 'app/core/table_model';
  5. const transformers = {};
  6. transformers['timeseries_to_rows'] = {
  7. description: 'Time series to rows',
  8. getColumns: () => {
  9. return [];
  10. },
  11. transform: (data, panel, model) => {
  12. model.columns = [{ text: 'Time', type: 'date' }, { text: 'Metric' }, { text: 'Value' }];
  13. for (let i = 0; i < data.length; i++) {
  14. const series = data[i];
  15. for (let y = 0; y < series.datapoints.length; y++) {
  16. const dp = series.datapoints[y];
  17. model.rows.push([dp[1], series.target, dp[0]]);
  18. }
  19. }
  20. },
  21. };
  22. transformers['timeseries_to_columns'] = {
  23. description: 'Time series to columns',
  24. getColumns: () => {
  25. return [];
  26. },
  27. transform: (data, panel, model) => {
  28. model.columns.push({ text: 'Time', type: 'date' });
  29. // group by time
  30. const points = {};
  31. for (let i = 0; i < data.length; i++) {
  32. const series = data[i];
  33. model.columns.push({ text: series.target });
  34. for (let y = 0; y < series.datapoints.length; y++) {
  35. const dp = series.datapoints[y];
  36. const timeKey = dp[1].toString();
  37. if (!points[timeKey]) {
  38. points[timeKey] = { time: dp[1] };
  39. points[timeKey][i] = dp[0];
  40. } else {
  41. points[timeKey][i] = dp[0];
  42. }
  43. }
  44. }
  45. for (const time in points) {
  46. const point = points[time];
  47. const values = [point.time];
  48. for (let i = 0; i < data.length; i++) {
  49. const value = point[i];
  50. values.push(value);
  51. }
  52. model.rows.push(values);
  53. }
  54. },
  55. };
  56. transformers['timeseries_aggregations'] = {
  57. description: 'Time series aggregations',
  58. getColumns: () => {
  59. return [
  60. { text: 'Avg', value: 'avg' },
  61. { text: 'Min', value: 'min' },
  62. { text: 'Max', value: 'max' },
  63. { text: 'Total', value: 'total' },
  64. { text: 'Current', value: 'current' },
  65. { text: 'Count', value: 'count' },
  66. ];
  67. },
  68. transform: (data, panel, model) => {
  69. let i, y;
  70. model.columns.push({ text: 'Metric' });
  71. for (i = 0; i < panel.columns.length; i++) {
  72. model.columns.push({ text: panel.columns[i].text });
  73. }
  74. for (i = 0; i < data.length; i++) {
  75. const series = new TimeSeries({
  76. datapoints: data[i].datapoints,
  77. alias: data[i].target,
  78. });
  79. series.getFlotPairs('connected');
  80. const cells = [series.alias];
  81. for (y = 0; y < panel.columns.length; y++) {
  82. cells.push(series.stats[panel.columns[y].value]);
  83. }
  84. model.rows.push(cells);
  85. }
  86. },
  87. };
  88. transformers['annotations'] = {
  89. description: 'Annotations',
  90. getColumns: () => {
  91. return [];
  92. },
  93. transform: (data, panel, model) => {
  94. model.columns.push({ text: 'Time', type: 'date' });
  95. model.columns.push({ text: 'Title' });
  96. model.columns.push({ text: 'Text' });
  97. model.columns.push({ text: 'Tags' });
  98. if (!data || !data.annotations || data.annotations.length === 0) {
  99. return;
  100. }
  101. for (let i = 0; i < data.annotations.length; i++) {
  102. const evt = data.annotations[i];
  103. model.rows.push([evt.time, evt.title, evt.text, evt.tags]);
  104. }
  105. },
  106. };
  107. transformers['table'] = {
  108. description: 'Table',
  109. getColumns: data => {
  110. if (!data || data.length === 0) {
  111. return [];
  112. }
  113. // Single query returns data columns as is
  114. if (data.length === 1) {
  115. return [...data[0].columns];
  116. }
  117. // Track column indexes: name -> index
  118. const columnNames = {};
  119. // Union of all columns
  120. const columns = data.reduce((acc, series) => {
  121. series.columns.forEach(col => {
  122. const { text } = col;
  123. if (columnNames[text] === undefined) {
  124. columnNames[text] = acc.length;
  125. acc.push(col);
  126. }
  127. });
  128. return acc;
  129. }, []);
  130. return columns;
  131. },
  132. transform: (data, panel, model) => {
  133. if (!data || data.length === 0) {
  134. return;
  135. }
  136. const noTableIndex = _.findIndex(data, d => d.type !== 'table');
  137. if (noTableIndex > -1) {
  138. throw {
  139. message: `Result of query #${String.fromCharCode(
  140. 65 + noTableIndex
  141. )} is not in table format, try using another transform.`,
  142. };
  143. }
  144. mergeTablesIntoModel(model, ...data);
  145. },
  146. };
  147. transformers['json'] = {
  148. description: 'JSON Data',
  149. getColumns: data => {
  150. if (!data || data.length === 0) {
  151. return [];
  152. }
  153. const names: any = {};
  154. for (let i = 0; i < data.length; i++) {
  155. const series = data[i];
  156. if (series.type !== 'docs') {
  157. continue;
  158. }
  159. // only look at 100 docs
  160. const maxDocs = Math.min(series.datapoints.length, 100);
  161. for (let y = 0; y < maxDocs; y++) {
  162. const doc = series.datapoints[y];
  163. const flattened = flatten(doc, null);
  164. for (const propName in flattened) {
  165. names[propName] = true;
  166. }
  167. }
  168. }
  169. return _.map(names, (value, key) => {
  170. return { text: key, value: key };
  171. });
  172. },
  173. transform: (data, panel, model) => {
  174. let i, y, z;
  175. for (const column of panel.columns) {
  176. const tableCol: any = { text: column.text };
  177. // if filterable data then set columns to filterable
  178. if (data.length > 0 && data[0].filterable) {
  179. tableCol.filterable = true;
  180. }
  181. model.columns.push(tableCol);
  182. }
  183. if (model.columns.length === 0) {
  184. model.columns.push({ text: 'JSON' });
  185. }
  186. for (i = 0; i < data.length; i++) {
  187. const series = data[i];
  188. for (y = 0; y < series.datapoints.length; y++) {
  189. const dp = series.datapoints[y];
  190. const values = [];
  191. if (_.isObject(dp) && panel.columns.length > 0) {
  192. const flattened = flatten(dp, null);
  193. for (z = 0; z < panel.columns.length; z++) {
  194. values.push(flattened[panel.columns[z].value]);
  195. }
  196. } else {
  197. values.push(JSON.stringify(dp));
  198. }
  199. model.rows.push(values);
  200. }
  201. }
  202. },
  203. };
  204. function transformDataToTable(data, panel) {
  205. const model = new TableModel();
  206. if (!data || data.length === 0) {
  207. return model;
  208. }
  209. const transformer = transformers[panel.transform];
  210. if (!transformer) {
  211. throw { message: 'Transformer ' + panel.transform + ' not found' };
  212. }
  213. transformer.transform(data, panel, model);
  214. return model;
  215. }
  216. export { transformers, transformDataToTable };