transformers.ts 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373
  1. import _ from "lodash";
  2. import flatten from "../../../core/utils/flatten";
  3. import TimeSeries from "../../../core/time_series2";
  4. import TableModel from "../../../core/table_model";
  5. var transformers = {};
  6. transformers["timeseries_to_rows"] = {
  7. description: "Time series to rows",
  8. getColumns: function() {
  9. return [];
  10. },
  11. transform: function(data, panel, model) {
  12. model.columns = [
  13. { text: "Time", type: "date" },
  14. { text: "Metric" },
  15. { text: "Value" }
  16. ];
  17. for (var i = 0; i < data.length; i++) {
  18. var series = data[i];
  19. for (var y = 0; y < series.datapoints.length; y++) {
  20. var dp = series.datapoints[y];
  21. model.rows.push([dp[1], series.target, dp[0]]);
  22. }
  23. }
  24. }
  25. };
  26. transformers["timeseries_to_columns"] = {
  27. description: "Time series to columns",
  28. getColumns: function() {
  29. return [];
  30. },
  31. transform: function(data, panel, model) {
  32. model.columns.push({ text: "Time", type: "date" });
  33. // group by time
  34. var points = {};
  35. for (let i = 0; i < data.length; i++) {
  36. var series = data[i];
  37. model.columns.push({ text: series.target });
  38. for (var y = 0; y < series.datapoints.length; y++) {
  39. var dp = series.datapoints[y];
  40. var timeKey = dp[1].toString();
  41. if (!points[timeKey]) {
  42. points[timeKey] = { time: dp[1] };
  43. points[timeKey][i] = dp[0];
  44. } else {
  45. points[timeKey][i] = dp[0];
  46. }
  47. }
  48. }
  49. for (var time in points) {
  50. var point = points[time];
  51. var values = [point.time];
  52. for (let i = 0; i < data.length; i++) {
  53. var value = point[i];
  54. values.push(value);
  55. }
  56. model.rows.push(values);
  57. }
  58. }
  59. };
  60. transformers["timeseries_aggregations"] = {
  61. description: "Time series aggregations",
  62. getColumns: function() {
  63. return [
  64. { text: "Avg", value: "avg" },
  65. { text: "Min", value: "min" },
  66. { text: "Max", value: "max" },
  67. { text: "Total", value: "total" },
  68. { text: "Current", value: "current" },
  69. { text: "Count", value: "count" }
  70. ];
  71. },
  72. transform: function(data, panel, model) {
  73. var i, y;
  74. model.columns.push({ text: "Metric" });
  75. for (i = 0; i < panel.columns.length; i++) {
  76. model.columns.push({ text: panel.columns[i].text });
  77. }
  78. for (i = 0; i < data.length; i++) {
  79. var series = new TimeSeries({
  80. datapoints: data[i].datapoints,
  81. alias: data[i].target
  82. });
  83. series.getFlotPairs("connected");
  84. var cells = [series.alias];
  85. for (y = 0; y < panel.columns.length; y++) {
  86. cells.push(series.stats[panel.columns[y].value]);
  87. }
  88. model.rows.push(cells);
  89. }
  90. }
  91. };
  92. transformers["annotations"] = {
  93. description: "Annotations",
  94. getColumns: function() {
  95. return [];
  96. },
  97. transform: function(data, panel, model) {
  98. model.columns.push({ text: "Time", type: "date" });
  99. model.columns.push({ text: "Title" });
  100. model.columns.push({ text: "Text" });
  101. model.columns.push({ text: "Tags" });
  102. if (!data || !data.annotations || data.annotations.length === 0) {
  103. return;
  104. }
  105. for (var i = 0; i < data.annotations.length; i++) {
  106. var evt = data.annotations[i];
  107. model.rows.push([evt.time, evt.title, evt.text, evt.tags]);
  108. }
  109. }
  110. };
  111. transformers["table"] = {
  112. description: "Table",
  113. getColumns: function(data) {
  114. if (!data || data.length === 0) {
  115. return [];
  116. }
  117. // Single query returns data columns as is
  118. if (data.length === 1) {
  119. return [...data[0].columns];
  120. }
  121. // Track column indexes: name -> index
  122. const columnNames = {};
  123. // Union of all columns
  124. const columns = data.reduce((acc, series) => {
  125. series.columns.forEach(col => {
  126. const { text } = col;
  127. if (columnNames[text] === undefined) {
  128. columnNames[text] = acc.length;
  129. acc.push(col);
  130. }
  131. });
  132. return acc;
  133. }, []);
  134. return columns;
  135. },
  136. transform: function(data, panel, model) {
  137. if (!data || data.length === 0) {
  138. return;
  139. }
  140. const noTableIndex = _.findIndex(data, d => d.type !== "table");
  141. if (noTableIndex > -1) {
  142. throw {
  143. message: `Result of query #${String.fromCharCode(
  144. 65 + noTableIndex
  145. )} is not in table format, try using another transform.`
  146. };
  147. }
  148. // Single query returns data columns and rows as is
  149. if (data.length === 1) {
  150. model.columns = [...data[0].columns];
  151. model.rows = [...data[0].rows];
  152. return;
  153. }
  154. // Track column indexes of union: name -> index
  155. const columnNames = {};
  156. // Union of all non-value columns
  157. const columnsUnion = data.reduce((acc, series) => {
  158. series.columns.forEach(col => {
  159. const { text } = col;
  160. if (columnNames[text] === undefined) {
  161. columnNames[text] = acc.length;
  162. acc.push(col);
  163. }
  164. });
  165. return acc;
  166. }, []);
  167. // Map old column index to union index per series, e.g.,
  168. // given columnNames {A: 0, B: 1} and
  169. // data [{columns: [{ text: 'A' }]}, {columns: [{ text: 'B' }]}] => [[0], [1]]
  170. const columnIndexMapper = data.map(series =>
  171. series.columns.map(col => columnNames[col.text])
  172. );
  173. // Flatten rows of all series and adjust new column indexes
  174. const flattenedRows = data.reduce((acc, series, seriesIndex) => {
  175. const mapper = columnIndexMapper[seriesIndex];
  176. series.rows.forEach(row => {
  177. const alteredRow = [];
  178. // Shifting entries according to index mapper
  179. mapper.forEach((to, from) => {
  180. alteredRow[to] = row[from];
  181. });
  182. acc.push(alteredRow);
  183. });
  184. return acc;
  185. }, []);
  186. // Returns true if both rows have matching non-empty fields as well as matching
  187. // indexes where one field is empty and the other is not
  188. function areRowsMatching(columns, row, otherRow) {
  189. let foundFieldToMatch = false;
  190. for (let columnIndex = 0; columnIndex < columns.length; columnIndex++) {
  191. if (
  192. row[columnIndex] !== undefined &&
  193. otherRow[columnIndex] !== undefined
  194. ) {
  195. if (row[columnIndex] !== otherRow[columnIndex]) {
  196. return false;
  197. }
  198. } else if (
  199. row[columnIndex] === undefined ||
  200. otherRow[columnIndex] === undefined
  201. ) {
  202. foundFieldToMatch = true;
  203. }
  204. }
  205. return foundFieldToMatch;
  206. }
  207. // Merge rows that have same values for columns
  208. const mergedRows = {};
  209. const compactedRows = flattenedRows.reduce((acc, row, rowIndex) => {
  210. if (!mergedRows[rowIndex]) {
  211. // Look from current row onwards
  212. let offset = rowIndex + 1;
  213. // More than one row can be merged into current row
  214. while (offset < flattenedRows.length) {
  215. // Find next row that could be merged
  216. const match = _.findIndex(
  217. flattenedRows,
  218. otherRow => areRowsMatching(columnsUnion, row, otherRow),
  219. offset
  220. );
  221. if (match > -1) {
  222. const matchedRow = flattenedRows[match];
  223. // Merge values from match into current row if there is a gap in the current row
  224. for (
  225. let columnIndex = 0;
  226. columnIndex < columnsUnion.length;
  227. columnIndex++
  228. ) {
  229. if (
  230. row[columnIndex] === undefined &&
  231. matchedRow[columnIndex] !== undefined
  232. ) {
  233. row[columnIndex] = matchedRow[columnIndex];
  234. }
  235. }
  236. // Dont visit this row again
  237. mergedRows[match] = matchedRow;
  238. // Keep looking for more rows to merge
  239. offset = match + 1;
  240. } else {
  241. // No match found, stop looking
  242. break;
  243. }
  244. }
  245. acc.push(row);
  246. }
  247. return acc;
  248. }, []);
  249. model.columns = columnsUnion;
  250. model.rows = compactedRows;
  251. }
  252. };
  253. transformers["json"] = {
  254. description: "JSON Data",
  255. getColumns: function(data) {
  256. if (!data || data.length === 0) {
  257. return [];
  258. }
  259. var names: any = {};
  260. for (var i = 0; i < data.length; i++) {
  261. var series = data[i];
  262. if (series.type !== "docs") {
  263. continue;
  264. }
  265. // only look at 100 docs
  266. var maxDocs = Math.min(series.datapoints.length, 100);
  267. for (var y = 0; y < maxDocs; y++) {
  268. var doc = series.datapoints[y];
  269. var flattened = flatten(doc, null);
  270. for (var propName in flattened) {
  271. names[propName] = true;
  272. }
  273. }
  274. }
  275. return _.map(names, function(value, key) {
  276. return { text: key, value: key };
  277. });
  278. },
  279. transform: function(data, panel, model) {
  280. var i, y, z;
  281. for (let column of panel.columns) {
  282. var tableCol: any = { text: column.text };
  283. // if filterable data then set columns to filterable
  284. if (data.length > 0 && data[0].filterable) {
  285. tableCol.filterable = true;
  286. }
  287. model.columns.push(tableCol);
  288. }
  289. if (model.columns.length === 0) {
  290. model.columns.push({ text: "JSON" });
  291. }
  292. for (i = 0; i < data.length; i++) {
  293. var series = data[i];
  294. for (y = 0; y < series.datapoints.length; y++) {
  295. var dp = series.datapoints[y];
  296. var values = [];
  297. if (_.isObject(dp) && panel.columns.length > 0) {
  298. var flattened = flatten(dp, null);
  299. for (z = 0; z < panel.columns.length; z++) {
  300. values.push(flattened[panel.columns[z].value]);
  301. }
  302. } else {
  303. values.push(JSON.stringify(dp));
  304. }
  305. model.rows.push(values);
  306. }
  307. }
  308. }
  309. };
  310. function transformDataToTable(data, panel) {
  311. var model = new TableModel();
  312. if (!data || data.length === 0) {
  313. return model;
  314. }
  315. var transformer = transformers[panel.transform];
  316. if (!transformer) {
  317. throw { message: "Transformer " + panel.transform + " not found" };
  318. }
  319. transformer.transform(data, panel, model);
  320. return model;
  321. }
  322. export { transformers, transformDataToTable };