transformers.ts 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
  1. import _ from 'lodash';
  2. import flatten from '../../../core/utils/flatten';
  3. import TimeSeries from '../../../core/time_series2';
  4. import TableModel from '../../../core/table_model';
  5. var transformers = {};
  6. transformers['timeseries_to_rows'] = {
  7. description: 'Time series to rows',
  8. getColumns: function() {
  9. return [];
  10. },
  11. transform: function(data, panel, model) {
  12. model.columns = [{ text: 'Time', type: 'date' }, { text: 'Metric' }, { text: 'Value' }];
  13. for (var i = 0; i < data.length; i++) {
  14. var series = data[i];
  15. for (var y = 0; y < series.datapoints.length; y++) {
  16. var dp = series.datapoints[y];
  17. model.rows.push([dp[1], series.target, dp[0]]);
  18. }
  19. }
  20. },
  21. };
  22. transformers['timeseries_to_columns'] = {
  23. description: 'Time series to columns',
  24. getColumns: function() {
  25. return [];
  26. },
  27. transform: function(data, panel, model) {
  28. model.columns.push({ text: 'Time', type: 'date' });
  29. // group by time
  30. var points = {};
  31. for (let i = 0; i < data.length; i++) {
  32. var series = data[i];
  33. model.columns.push({ text: series.target });
  34. for (var y = 0; y < series.datapoints.length; y++) {
  35. var dp = series.datapoints[y];
  36. var timeKey = dp[1].toString();
  37. if (!points[timeKey]) {
  38. points[timeKey] = { time: dp[1] };
  39. points[timeKey][i] = dp[0];
  40. } else {
  41. points[timeKey][i] = dp[0];
  42. }
  43. }
  44. }
  45. for (var time in points) {
  46. var point = points[time];
  47. var values = [point.time];
  48. for (let i = 0; i < data.length; i++) {
  49. var value = point[i];
  50. values.push(value);
  51. }
  52. model.rows.push(values);
  53. }
  54. },
  55. };
  56. transformers['timeseries_aggregations'] = {
  57. description: 'Time series aggregations',
  58. getColumns: function() {
  59. return [
  60. { text: 'Avg', value: 'avg' },
  61. { text: 'Min', value: 'min' },
  62. { text: 'Max', value: 'max' },
  63. { text: 'Total', value: 'total' },
  64. { text: 'Current', value: 'current' },
  65. { text: 'Count', value: 'count' },
  66. ];
  67. },
  68. transform: function(data, panel, model) {
  69. var i, y;
  70. model.columns.push({ text: 'Metric' });
  71. for (i = 0; i < panel.columns.length; i++) {
  72. model.columns.push({ text: panel.columns[i].text });
  73. }
  74. for (i = 0; i < data.length; i++) {
  75. var series = new TimeSeries({
  76. datapoints: data[i].datapoints,
  77. alias: data[i].target,
  78. });
  79. series.getFlotPairs('connected');
  80. var cells = [series.alias];
  81. for (y = 0; y < panel.columns.length; y++) {
  82. cells.push(series.stats[panel.columns[y].value]);
  83. }
  84. model.rows.push(cells);
  85. }
  86. },
  87. };
  88. transformers['annotations'] = {
  89. description: 'Annotations',
  90. getColumns: function() {
  91. return [];
  92. },
  93. transform: function(data, panel, model) {
  94. model.columns.push({ text: 'Time', type: 'date' });
  95. model.columns.push({ text: 'Title' });
  96. model.columns.push({ text: 'Text' });
  97. model.columns.push({ text: 'Tags' });
  98. if (!data || !data.annotations || data.annotations.length === 0) {
  99. return;
  100. }
  101. for (var i = 0; i < data.annotations.length; i++) {
  102. var evt = data.annotations[i];
  103. model.rows.push([evt.time, evt.title, evt.text, evt.tags]);
  104. }
  105. },
  106. };
  107. transformers['table'] = {
  108. description: 'Table',
  109. getColumns: function(data) {
  110. if (!data || data.length === 0) {
  111. return [];
  112. }
  113. // Single query returns data columns as is
  114. if (data.length === 1) {
  115. return [...data[0].columns];
  116. }
  117. // Track column indexes: name -> index
  118. const columnNames = {};
  119. // Union of all columns
  120. const columns = data.reduce((acc, series) => {
  121. series.columns.forEach(col => {
  122. const { text } = col;
  123. if (columnNames[text] === undefined) {
  124. columnNames[text] = acc.length;
  125. acc.push(col);
  126. }
  127. });
  128. return acc;
  129. }, []);
  130. return columns;
  131. },
  132. transform: function(data, panel, model) {
  133. if (!data || data.length === 0) {
  134. return;
  135. }
  136. const noTableIndex = _.findIndex(data, d => d.type !== 'table');
  137. if (noTableIndex > -1) {
  138. throw {
  139. message: `Result of query #${String.fromCharCode(
  140. 65 + noTableIndex
  141. )} is not in table format, try using another transform.`,
  142. };
  143. }
  144. // Single query returns data columns and rows as is
  145. if (data.length === 1) {
  146. model.columns = [...data[0].columns];
  147. model.rows = [...data[0].rows];
  148. return;
  149. }
  150. // Track column indexes of union: name -> index
  151. const columnNames = {};
  152. // Union of all non-value columns
  153. const columnsUnion = data.reduce((acc, series) => {
  154. series.columns.forEach(col => {
  155. const { text } = col;
  156. if (columnNames[text] === undefined) {
  157. columnNames[text] = acc.length;
  158. acc.push(col);
  159. }
  160. });
  161. return acc;
  162. }, []);
  163. // Map old column index to union index per series, e.g.,
  164. // given columnNames {A: 0, B: 1} and
  165. // data [{columns: [{ text: 'A' }]}, {columns: [{ text: 'B' }]}] => [[0], [1]]
  166. const columnIndexMapper = data.map(series => series.columns.map(col => columnNames[col.text]));
  167. // Flatten rows of all series and adjust new column indexes
  168. const flattenedRows = data.reduce((acc, series, seriesIndex) => {
  169. const mapper = columnIndexMapper[seriesIndex];
  170. series.rows.forEach(row => {
  171. const alteredRow = [];
  172. // Shifting entries according to index mapper
  173. mapper.forEach((to, from) => {
  174. alteredRow[to] = row[from];
  175. });
  176. acc.push(alteredRow);
  177. });
  178. return acc;
  179. }, []);
  180. // Returns true if both rows have matching non-empty fields as well as matching
  181. // indexes where one field is empty and the other is not
  182. function areRowsMatching(columns, row, otherRow) {
  183. let foundFieldToMatch = false;
  184. for (let columnIndex = 0; columnIndex < columns.length; columnIndex++) {
  185. if (row[columnIndex] !== undefined && otherRow[columnIndex] !== undefined) {
  186. if (row[columnIndex] !== otherRow[columnIndex]) {
  187. return false;
  188. }
  189. } else if (row[columnIndex] === undefined || otherRow[columnIndex] === undefined) {
  190. foundFieldToMatch = true;
  191. }
  192. }
  193. return foundFieldToMatch;
  194. }
  195. // Merge rows that have same values for columns
  196. const mergedRows = {};
  197. const compactedRows = flattenedRows.reduce((acc, row, rowIndex) => {
  198. if (!mergedRows[rowIndex]) {
  199. // Look from current row onwards
  200. let offset = rowIndex + 1;
  201. // More than one row can be merged into current row
  202. while (offset < flattenedRows.length) {
  203. // Find next row that could be merged
  204. const match = _.findIndex(flattenedRows, otherRow => areRowsMatching(columnsUnion, row, otherRow), offset);
  205. if (match > -1) {
  206. const matchedRow = flattenedRows[match];
  207. // Merge values from match into current row if there is a gap in the current row
  208. for (let columnIndex = 0; columnIndex < columnsUnion.length; columnIndex++) {
  209. if (row[columnIndex] === undefined && matchedRow[columnIndex] !== undefined) {
  210. row[columnIndex] = matchedRow[columnIndex];
  211. }
  212. }
  213. // Dont visit this row again
  214. mergedRows[match] = matchedRow;
  215. // Keep looking for more rows to merge
  216. offset = match + 1;
  217. } else {
  218. // No match found, stop looking
  219. break;
  220. }
  221. }
  222. acc.push(row);
  223. }
  224. return acc;
  225. }, []);
  226. model.columns = columnsUnion;
  227. model.rows = compactedRows;
  228. },
  229. };
  230. transformers['json'] = {
  231. description: 'JSON Data',
  232. getColumns: function(data) {
  233. if (!data || data.length === 0) {
  234. return [];
  235. }
  236. var names: any = {};
  237. for (var i = 0; i < data.length; i++) {
  238. var series = data[i];
  239. if (series.type !== 'docs') {
  240. continue;
  241. }
  242. // only look at 100 docs
  243. var maxDocs = Math.min(series.datapoints.length, 100);
  244. for (var y = 0; y < maxDocs; y++) {
  245. var doc = series.datapoints[y];
  246. var flattened = flatten(doc, null);
  247. for (var propName in flattened) {
  248. names[propName] = true;
  249. }
  250. }
  251. }
  252. return _.map(names, function(value, key) {
  253. return { text: key, value: key };
  254. });
  255. },
  256. transform: function(data, panel, model) {
  257. var i, y, z;
  258. for (let column of panel.columns) {
  259. var tableCol: any = { text: column.text };
  260. // if filterable data then set columns to filterable
  261. if (data.length > 0 && data[0].filterable) {
  262. tableCol.filterable = true;
  263. }
  264. model.columns.push(tableCol);
  265. }
  266. if (model.columns.length === 0) {
  267. model.columns.push({ text: 'JSON' });
  268. }
  269. for (i = 0; i < data.length; i++) {
  270. var series = data[i];
  271. for (y = 0; y < series.datapoints.length; y++) {
  272. var dp = series.datapoints[y];
  273. var values = [];
  274. if (_.isObject(dp) && panel.columns.length > 0) {
  275. var flattened = flatten(dp, null);
  276. for (z = 0; z < panel.columns.length; z++) {
  277. values.push(flattened[panel.columns[z].value]);
  278. }
  279. } else {
  280. values.push(JSON.stringify(dp));
  281. }
  282. model.rows.push(values);
  283. }
  284. }
  285. },
  286. };
  287. function transformDataToTable(data, panel) {
  288. var model = new TableModel();
  289. if (!data || data.length === 0) {
  290. return model;
  291. }
  292. var transformer = transformers[panel.transform];
  293. if (!transformer) {
  294. throw { message: 'Transformer ' + panel.transform + ' not found' };
  295. }
  296. transformer.transform(data, panel, model);
  297. return model;
  298. }
  299. export { transformers, transformDataToTable };