| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350 |
- import _ from 'lodash';
- import flatten from '../../../core/utils/flatten';
- import TimeSeries from '../../../core/time_series2';
- import TableModel from '../../../core/table_model';
- var transformers = {};
- transformers['timeseries_to_rows'] = {
- description: 'Time series to rows',
- getColumns: function() {
- return [];
- },
- transform: function(data, panel, model) {
- model.columns = [{ text: 'Time', type: 'date' }, { text: 'Metric' }, { text: 'Value' }];
- for (var i = 0; i < data.length; i++) {
- var series = data[i];
- for (var y = 0; y < series.datapoints.length; y++) {
- var dp = series.datapoints[y];
- model.rows.push([dp[1], series.target, dp[0]]);
- }
- }
- },
- };
- transformers['timeseries_to_columns'] = {
- description: 'Time series to columns',
- getColumns: function() {
- return [];
- },
- transform: function(data, panel, model) {
- model.columns.push({ text: 'Time', type: 'date' });
- // group by time
- var points = {};
- for (let i = 0; i < data.length; i++) {
- var series = data[i];
- model.columns.push({ text: series.target });
- for (var y = 0; y < series.datapoints.length; y++) {
- var dp = series.datapoints[y];
- var timeKey = dp[1].toString();
- if (!points[timeKey]) {
- points[timeKey] = { time: dp[1] };
- points[timeKey][i] = dp[0];
- } else {
- points[timeKey][i] = dp[0];
- }
- }
- }
- for (var time in points) {
- var point = points[time];
- var values = [point.time];
- for (let i = 0; i < data.length; i++) {
- var value = point[i];
- values.push(value);
- }
- model.rows.push(values);
- }
- },
- };
- transformers['timeseries_aggregations'] = {
- description: 'Time series aggregations',
- getColumns: function() {
- return [
- { text: 'Avg', value: 'avg' },
- { text: 'Min', value: 'min' },
- { text: 'Max', value: 'max' },
- { text: 'Total', value: 'total' },
- { text: 'Current', value: 'current' },
- { text: 'Count', value: 'count' },
- ];
- },
- transform: function(data, panel, model) {
- var i, y;
- model.columns.push({ text: 'Metric' });
- for (i = 0; i < panel.columns.length; i++) {
- model.columns.push({ text: panel.columns[i].text });
- }
- for (i = 0; i < data.length; i++) {
- var series = new TimeSeries({
- datapoints: data[i].datapoints,
- alias: data[i].target,
- });
- series.getFlotPairs('connected');
- var cells = [series.alias];
- for (y = 0; y < panel.columns.length; y++) {
- cells.push(series.stats[panel.columns[y].value]);
- }
- model.rows.push(cells);
- }
- },
- };
- transformers['annotations'] = {
- description: 'Annotations',
- getColumns: function() {
- return [];
- },
- transform: function(data, panel, model) {
- model.columns.push({ text: 'Time', type: 'date' });
- model.columns.push({ text: 'Title' });
- model.columns.push({ text: 'Text' });
- model.columns.push({ text: 'Tags' });
- if (!data || !data.annotations || data.annotations.length === 0) {
- return;
- }
- for (var i = 0; i < data.annotations.length; i++) {
- var evt = data.annotations[i];
- model.rows.push([evt.time, evt.title, evt.text, evt.tags]);
- }
- },
- };
- transformers['table'] = {
- description: 'Table',
- getColumns: function(data) {
- if (!data || data.length === 0) {
- return [];
- }
- // Single query returns data columns as is
- if (data.length === 1) {
- return [...data[0].columns];
- }
- // Track column indexes: name -> index
- const columnNames = {};
- // Union of all columns
- const columns = data.reduce((acc, series) => {
- series.columns.forEach(col => {
- const { text } = col;
- if (columnNames[text] === undefined) {
- columnNames[text] = acc.length;
- acc.push(col);
- }
- });
- return acc;
- }, []);
- return columns;
- },
- transform: function(data, panel, model) {
- if (!data || data.length === 0) {
- return;
- }
- const noTableIndex = _.findIndex(data, d => d.type !== 'table');
- if (noTableIndex > -1) {
- throw {
- message: `Result of query #${String.fromCharCode(
- 65 + noTableIndex
- )} is not in table format, try using another transform.`,
- };
- }
- // Single query returns data columns and rows as is
- if (data.length === 1) {
- model.columns = [...data[0].columns];
- model.rows = [...data[0].rows];
- return;
- }
- // Track column indexes of union: name -> index
- const columnNames = {};
- // Union of all non-value columns
- const columnsUnion = data.reduce((acc, series) => {
- series.columns.forEach(col => {
- const { text } = col;
- if (columnNames[text] === undefined) {
- columnNames[text] = acc.length;
- acc.push(col);
- }
- });
- return acc;
- }, []);
- // Map old column index to union index per series, e.g.,
- // given columnNames {A: 0, B: 1} and
- // data [{columns: [{ text: 'A' }]}, {columns: [{ text: 'B' }]}] => [[0], [1]]
- const columnIndexMapper = data.map(series => series.columns.map(col => columnNames[col.text]));
- // Flatten rows of all series and adjust new column indexes
- const flattenedRows = data.reduce((acc, series, seriesIndex) => {
- const mapper = columnIndexMapper[seriesIndex];
- series.rows.forEach(row => {
- const alteredRow = [];
- // Shifting entries according to index mapper
- mapper.forEach((to, from) => {
- alteredRow[to] = row[from];
- });
- acc.push(alteredRow);
- });
- return acc;
- }, []);
- // Returns true if both rows have matching non-empty fields as well as matching
- // indexes where one field is empty and the other is not
- function areRowsMatching(columns, row, otherRow) {
- let foundFieldToMatch = false;
- for (let columnIndex = 0; columnIndex < columns.length; columnIndex++) {
- if (row[columnIndex] !== undefined && otherRow[columnIndex] !== undefined) {
- if (row[columnIndex] !== otherRow[columnIndex]) {
- return false;
- }
- } else if (row[columnIndex] === undefined || otherRow[columnIndex] === undefined) {
- foundFieldToMatch = true;
- }
- }
- return foundFieldToMatch;
- }
- // Merge rows that have same values for columns
- const mergedRows = {};
- const compactedRows = flattenedRows.reduce((acc, row, rowIndex) => {
- if (!mergedRows[rowIndex]) {
- // Look from current row onwards
- let offset = rowIndex + 1;
- // More than one row can be merged into current row
- while (offset < flattenedRows.length) {
- // Find next row that could be merged
- const match = _.findIndex(flattenedRows, otherRow => areRowsMatching(columnsUnion, row, otherRow), offset);
- if (match > -1) {
- const matchedRow = flattenedRows[match];
- // Merge values from match into current row if there is a gap in the current row
- for (let columnIndex = 0; columnIndex < columnsUnion.length; columnIndex++) {
- if (row[columnIndex] === undefined && matchedRow[columnIndex] !== undefined) {
- row[columnIndex] = matchedRow[columnIndex];
- }
- }
- // Dont visit this row again
- mergedRows[match] = matchedRow;
- // Keep looking for more rows to merge
- offset = match + 1;
- } else {
- // No match found, stop looking
- break;
- }
- }
- acc.push(row);
- }
- return acc;
- }, []);
- model.columns = columnsUnion;
- model.rows = compactedRows;
- },
- };
- transformers['json'] = {
- description: 'JSON Data',
- getColumns: function(data) {
- if (!data || data.length === 0) {
- return [];
- }
- var names: any = {};
- for (var i = 0; i < data.length; i++) {
- var series = data[i];
- if (series.type !== 'docs') {
- continue;
- }
- // only look at 100 docs
- var maxDocs = Math.min(series.datapoints.length, 100);
- for (var y = 0; y < maxDocs; y++) {
- var doc = series.datapoints[y];
- var flattened = flatten(doc, null);
- for (var propName in flattened) {
- names[propName] = true;
- }
- }
- }
- return _.map(names, function(value, key) {
- return { text: key, value: key };
- });
- },
- transform: function(data, panel, model) {
- var i, y, z;
- for (let column of panel.columns) {
- var tableCol: any = { text: column.text };
- // if filterable data then set columns to filterable
- if (data.length > 0 && data[0].filterable) {
- tableCol.filterable = true;
- }
- model.columns.push(tableCol);
- }
- if (model.columns.length === 0) {
- model.columns.push({ text: 'JSON' });
- }
- for (i = 0; i < data.length; i++) {
- var series = data[i];
- for (y = 0; y < series.datapoints.length; y++) {
- var dp = series.datapoints[y];
- var values = [];
- if (_.isObject(dp) && panel.columns.length > 0) {
- var flattened = flatten(dp, null);
- for (z = 0; z < panel.columns.length; z++) {
- values.push(flattened[panel.columns[z].value]);
- }
- } else {
- values.push(JSON.stringify(dp));
- }
- model.rows.push(values);
- }
- }
- },
- };
- function transformDataToTable(data, panel) {
- var model = new TableModel();
- if (!data || data.length === 0) {
- return model;
- }
- var transformer = transformers[panel.transform];
- if (!transformer) {
- throw { message: 'Transformer ' + panel.transform + ' not found' };
- }
- transformer.transform(data, panel, model);
- return model;
- }
- export { transformers, transformDataToTable };
|