| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370 |
- import {
- DataFrame,
- FieldType,
- LogsModel,
- LogsMetaKind,
- LogsDedupStrategy,
- LogLevel,
- DataFrameHelper,
- toDataFrame,
- } from '@grafana/data';
- import { dedupLogRows, dataFrameToLogsModel } from '../logs_model';
- describe('dedupLogRows()', () => {
- test('should return rows as is when dedup is set to none', () => {
- const logs = {
- rows: [
- {
- entry: 'WARN test 1.23 on [xxx]',
- },
- {
- entry: 'WARN test 1.23 on [xxx]',
- },
- ],
- };
- expect(dedupLogRows(logs as LogsModel, LogsDedupStrategy.none).rows).toMatchObject(logs.rows);
- });
- test('should dedup on exact matches', () => {
- const logs = {
- rows: [
- {
- entry: 'WARN test 1.23 on [xxx]',
- },
- {
- entry: 'WARN test 1.23 on [xxx]',
- },
- {
- entry: 'INFO test 2.44 on [xxx]',
- },
- {
- entry: 'WARN test 1.23 on [xxx]',
- },
- ],
- };
- expect(dedupLogRows(logs as LogsModel, LogsDedupStrategy.exact).rows).toEqual([
- {
- duplicates: 1,
- entry: 'WARN test 1.23 on [xxx]',
- },
- {
- duplicates: 0,
- entry: 'INFO test 2.44 on [xxx]',
- },
- {
- duplicates: 0,
- entry: 'WARN test 1.23 on [xxx]',
- },
- ]);
- });
- test('should dedup on number matches', () => {
- const logs = {
- rows: [
- {
- entry: 'WARN test 1.2323423 on [xxx]',
- },
- {
- entry: 'WARN test 1.23 on [xxx]',
- },
- {
- entry: 'INFO test 2.44 on [xxx]',
- },
- {
- entry: 'WARN test 1.23 on [xxx]',
- },
- ],
- };
- expect(dedupLogRows(logs as LogsModel, LogsDedupStrategy.numbers).rows).toEqual([
- {
- duplicates: 1,
- entry: 'WARN test 1.2323423 on [xxx]',
- },
- {
- duplicates: 0,
- entry: 'INFO test 2.44 on [xxx]',
- },
- {
- duplicates: 0,
- entry: 'WARN test 1.23 on [xxx]',
- },
- ]);
- });
- test('should dedup on signature matches', () => {
- const logs = {
- rows: [
- {
- entry: 'WARN test 1.2323423 on [xxx]',
- },
- {
- entry: 'WARN test 1.23 on [xxx]',
- },
- {
- entry: 'INFO test 2.44 on [xxx]',
- },
- {
- entry: 'WARN test 1.23 on [xxx]',
- },
- ],
- };
- expect(dedupLogRows(logs as LogsModel, LogsDedupStrategy.signature).rows).toEqual([
- {
- duplicates: 3,
- entry: 'WARN test 1.2323423 on [xxx]',
- },
- ]);
- });
- test('should return to non-deduped state on same log result', () => {
- const logs = {
- rows: [
- {
- entry: 'INFO 123',
- },
- {
- entry: 'WARN 123',
- },
- {
- entry: 'WARN 123',
- },
- ],
- };
- expect(dedupLogRows(logs as LogsModel, LogsDedupStrategy.exact).rows).toEqual([
- {
- duplicates: 0,
- entry: 'INFO 123',
- },
- {
- duplicates: 1,
- entry: 'WARN 123',
- },
- ]);
- expect(dedupLogRows(logs as LogsModel, LogsDedupStrategy.none).rows).toEqual(logs.rows);
- });
- });
- const emptyLogsModel: any = {
- hasUniqueLabels: false,
- rows: [],
- meta: [],
- series: [],
- };
- describe('dataFrameToLogsModel', () => {
- it('given empty series should return empty logs model', () => {
- expect(dataFrameToLogsModel([] as DataFrame[], 0)).toMatchObject(emptyLogsModel);
- });
- it('given series without correct series name should return empty logs model', () => {
- const series: DataFrame[] = [
- toDataFrame({
- fields: [],
- }),
- ];
- expect(dataFrameToLogsModel(series, 0)).toMatchObject(emptyLogsModel);
- });
- it('given series without a time field should return empty logs model', () => {
- const series: DataFrame[] = [
- new DataFrameHelper({
- fields: [
- {
- name: 'message',
- type: FieldType.string,
- values: [],
- },
- ],
- }),
- ];
- expect(dataFrameToLogsModel(series, 0)).toMatchObject(emptyLogsModel);
- });
- it('given series without a string field should return empty logs model', () => {
- const series: DataFrame[] = [
- new DataFrameHelper({
- fields: [
- {
- name: 'time',
- type: FieldType.time,
- values: [],
- },
- ],
- }),
- ];
- expect(dataFrameToLogsModel(series, 0)).toMatchObject(emptyLogsModel);
- });
- it('given one series should return expected logs model', () => {
- const series: DataFrame[] = [
- new DataFrameHelper({
- labels: {
- filename: '/var/log/grafana/grafana.log',
- job: 'grafana',
- },
- fields: [
- {
- name: 'time',
- type: FieldType.time,
- values: ['2019-04-26T09:28:11.352440161Z', '2019-04-26T14:42:50.991981292Z'],
- },
- {
- name: 'message',
- type: FieldType.string,
- values: [
- 't=2019-04-26T11:05:28+0200 lvl=info msg="Initializing DatasourceCacheService" logger=server',
- 't=2019-04-26T16:42:50+0200 lvl=eror msg="new token…t unhashed token=56d9fdc5c8b7400bd51b060eea8ca9d7',
- ],
- },
- ],
- meta: {
- limit: 1000,
- },
- }),
- ];
- const logsModel = dataFrameToLogsModel(series, 0);
- expect(logsModel.hasUniqueLabels).toBeFalsy();
- expect(logsModel.rows).toHaveLength(2);
- expect(logsModel.rows).toMatchObject([
- {
- timestamp: '2019-04-26T09:28:11.352440161Z',
- entry: 't=2019-04-26T11:05:28+0200 lvl=info msg="Initializing DatasourceCacheService" logger=server',
- labels: { filename: '/var/log/grafana/grafana.log', job: 'grafana' },
- logLevel: 'info',
- uniqueLabels: {},
- },
- {
- timestamp: '2019-04-26T14:42:50.991981292Z',
- entry: 't=2019-04-26T16:42:50+0200 lvl=eror msg="new token…t unhashed token=56d9fdc5c8b7400bd51b060eea8ca9d7',
- labels: { filename: '/var/log/grafana/grafana.log', job: 'grafana' },
- logLevel: 'error',
- uniqueLabels: {},
- },
- ]);
- expect(logsModel.series).toHaveLength(2);
- expect(logsModel.meta).toHaveLength(2);
- expect(logsModel.meta[0]).toMatchObject({
- label: 'Common labels',
- value: series[0].labels,
- kind: LogsMetaKind.LabelsMap,
- });
- expect(logsModel.meta[1]).toMatchObject({
- label: 'Limit',
- value: `1000 (2 returned)`,
- kind: LogsMetaKind.String,
- });
- });
- it('given one series without labels should return expected logs model', () => {
- const series: DataFrame[] = [
- new DataFrameHelper({
- fields: [
- {
- name: 'time',
- type: FieldType.time,
- values: ['1970-01-01T00:00:01Z'],
- },
- {
- name: 'message',
- type: FieldType.string,
- values: ['WARN boooo'],
- },
- {
- name: 'level',
- type: FieldType.string,
- values: ['dbug'],
- },
- ],
- }),
- ];
- const logsModel = dataFrameToLogsModel(series, 0);
- expect(logsModel.rows).toHaveLength(1);
- expect(logsModel.rows).toMatchObject([
- {
- entry: 'WARN boooo',
- labels: undefined,
- logLevel: LogLevel.debug,
- uniqueLabels: {},
- },
- ]);
- });
- it('given multiple series should return expected logs model', () => {
- const series: DataFrame[] = [
- toDataFrame({
- labels: {
- foo: 'bar',
- baz: '1',
- level: 'dbug',
- },
- fields: [
- {
- name: 'ts',
- type: FieldType.time,
- values: ['1970-01-01T00:00:01Z'],
- },
- {
- name: 'line',
- type: FieldType.string,
- values: ['WARN boooo'],
- },
- ],
- }),
- toDataFrame({
- name: 'logs',
- labels: {
- foo: 'bar',
- baz: '2',
- level: 'err',
- },
- fields: [
- {
- name: 'time',
- type: FieldType.time,
- values: ['1970-01-01T00:00:00Z', '1970-01-01T00:00:02Z'],
- },
- {
- name: 'message',
- type: FieldType.string,
- values: ['INFO 1', 'INFO 2'],
- },
- ],
- }),
- ];
- const logsModel = dataFrameToLogsModel(series, 0);
- expect(logsModel.hasUniqueLabels).toBeTruthy();
- expect(logsModel.rows).toHaveLength(3);
- expect(logsModel.rows).toMatchObject([
- {
- entry: 'WARN boooo',
- labels: { foo: 'bar', baz: '1' },
- logLevel: LogLevel.debug,
- uniqueLabels: { baz: '1' },
- },
- {
- entry: 'INFO 1',
- labels: { foo: 'bar', baz: '2' },
- logLevel: LogLevel.error,
- uniqueLabels: { baz: '2' },
- },
- {
- entry: 'INFO 2',
- labels: { foo: 'bar', baz: '2' },
- logLevel: LogLevel.error,
- uniqueLabels: { baz: '2' },
- },
- ]);
- expect(logsModel.series).toHaveLength(2);
- expect(logsModel.meta).toHaveLength(1);
- expect(logsModel.meta[0]).toMatchObject({
- label: 'Common labels',
- value: {
- foo: 'bar',
- },
- kind: LogsMetaKind.LabelsMap,
- });
- });
- });
|