| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711 |
- // THIS FILE IS AUTOMATICALLY GENERATED. DO NOT EDIT.
- // Package machinelearning provides a client for Amazon Machine Learning.
- package machinelearning
- import (
- "fmt"
- "time"
- "github.com/aws/aws-sdk-go/aws/awsutil"
- "github.com/aws/aws-sdk-go/aws/request"
- )
- const opAddTags = "AddTags"
- // AddTagsRequest generates a "aws/request.Request" representing the
- // client's request for the AddTags operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the AddTags method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the AddTagsRequest method.
- // req, resp := client.AddTagsRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) AddTagsRequest(input *AddTagsInput) (req *request.Request, output *AddTagsOutput) {
- op := &request.Operation{
- Name: opAddTags,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &AddTagsInput{}
- }
- req = c.newRequest(op, input, output)
- output = &AddTagsOutput{}
- req.Data = output
- return
- }
- // Adds one or more tags to an object, up to a limit of 10. Each tag consists
- // of a key and an optional value. If you add a tag using a key that is already
- // associated with the ML object, AddTags updates the tag's value.
- func (c *MachineLearning) AddTags(input *AddTagsInput) (*AddTagsOutput, error) {
- req, out := c.AddTagsRequest(input)
- err := req.Send()
- return out, err
- }
- const opCreateBatchPrediction = "CreateBatchPrediction"
- // CreateBatchPredictionRequest generates a "aws/request.Request" representing the
- // client's request for the CreateBatchPrediction operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the CreateBatchPrediction method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the CreateBatchPredictionRequest method.
- // req, resp := client.CreateBatchPredictionRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) CreateBatchPredictionRequest(input *CreateBatchPredictionInput) (req *request.Request, output *CreateBatchPredictionOutput) {
- op := &request.Operation{
- Name: opCreateBatchPrediction,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &CreateBatchPredictionInput{}
- }
- req = c.newRequest(op, input, output)
- output = &CreateBatchPredictionOutput{}
- req.Data = output
- return
- }
- // Generates predictions for a group of observations. The observations to process
- // exist in one or more data files referenced by a DataSource. This operation
- // creates a new BatchPrediction, and uses an MLModel and the data files referenced
- // by the DataSource as information sources.
- //
- // CreateBatchPrediction is an asynchronous operation. In response to CreateBatchPrediction,
- // Amazon Machine Learning (Amazon ML) immediately returns and sets the BatchPrediction
- // status to PENDING. After the BatchPrediction completes, Amazon ML sets the
- // status to COMPLETED.
- //
- // You can poll for status updates by using the GetBatchPrediction operation
- // and checking the Status parameter of the result. After the COMPLETED status
- // appears, the results are available in the location specified by the OutputUri
- // parameter.
- func (c *MachineLearning) CreateBatchPrediction(input *CreateBatchPredictionInput) (*CreateBatchPredictionOutput, error) {
- req, out := c.CreateBatchPredictionRequest(input)
- err := req.Send()
- return out, err
- }
- const opCreateDataSourceFromRDS = "CreateDataSourceFromRDS"
- // CreateDataSourceFromRDSRequest generates a "aws/request.Request" representing the
- // client's request for the CreateDataSourceFromRDS operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the CreateDataSourceFromRDS method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the CreateDataSourceFromRDSRequest method.
- // req, resp := client.CreateDataSourceFromRDSRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) CreateDataSourceFromRDSRequest(input *CreateDataSourceFromRDSInput) (req *request.Request, output *CreateDataSourceFromRDSOutput) {
- op := &request.Operation{
- Name: opCreateDataSourceFromRDS,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &CreateDataSourceFromRDSInput{}
- }
- req = c.newRequest(op, input, output)
- output = &CreateDataSourceFromRDSOutput{}
- req.Data = output
- return
- }
- // Creates a DataSource object from an Amazon Relational Database Service (http://aws.amazon.com/rds/)
- // (Amazon RDS). A DataSource references data that can be used to perform CreateMLModel,
- // CreateEvaluation, or CreateBatchPrediction operations.
- //
- // CreateDataSourceFromRDS is an asynchronous operation. In response to CreateDataSourceFromRDS,
- // Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource
- // status to PENDING. After the DataSource is created and ready for use, Amazon
- // ML sets the Status parameter to COMPLETED. DataSource in the COMPLETED or
- // PENDING state can be used only to perform >CreateMLModel>, CreateEvaluation,
- // or CreateBatchPrediction operations.
- //
- // If Amazon ML cannot accept the input source, it sets the Status parameter
- // to FAILED and includes an error message in the Message attribute of the GetDataSource
- // operation response.
- func (c *MachineLearning) CreateDataSourceFromRDS(input *CreateDataSourceFromRDSInput) (*CreateDataSourceFromRDSOutput, error) {
- req, out := c.CreateDataSourceFromRDSRequest(input)
- err := req.Send()
- return out, err
- }
- const opCreateDataSourceFromRedshift = "CreateDataSourceFromRedshift"
- // CreateDataSourceFromRedshiftRequest generates a "aws/request.Request" representing the
- // client's request for the CreateDataSourceFromRedshift operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the CreateDataSourceFromRedshift method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the CreateDataSourceFromRedshiftRequest method.
- // req, resp := client.CreateDataSourceFromRedshiftRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) CreateDataSourceFromRedshiftRequest(input *CreateDataSourceFromRedshiftInput) (req *request.Request, output *CreateDataSourceFromRedshiftOutput) {
- op := &request.Operation{
- Name: opCreateDataSourceFromRedshift,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &CreateDataSourceFromRedshiftInput{}
- }
- req = c.newRequest(op, input, output)
- output = &CreateDataSourceFromRedshiftOutput{}
- req.Data = output
- return
- }
- // Creates a DataSource from a database hosted on an Amazon Redshift cluster.
- // A DataSource references data that can be used to perform either CreateMLModel,
- // CreateEvaluation, or CreateBatchPrediction operations.
- //
- // CreateDataSourceFromRedshift is an asynchronous operation. In response to
- // CreateDataSourceFromRedshift, Amazon Machine Learning (Amazon ML) immediately
- // returns and sets the DataSource status to PENDING. After the DataSource is
- // created and ready for use, Amazon ML sets the Status parameter to COMPLETED.
- // DataSource in COMPLETED or PENDING states can be used to perform only CreateMLModel,
- // CreateEvaluation, or CreateBatchPrediction operations.
- //
- // If Amazon ML can't accept the input source, it sets the Status parameter
- // to FAILED and includes an error message in the Message attribute of the GetDataSource
- // operation response.
- //
- // The observations should be contained in the database hosted on an Amazon
- // Redshift cluster and should be specified by a SelectSqlQuery query. Amazon
- // ML executes an Unload command in Amazon Redshift to transfer the result set
- // of the SelectSqlQuery query to S3StagingLocation.
- //
- // After the DataSource has been created, it's ready for use in evaluations
- // and batch predictions. If you plan to use the DataSource to train an MLModel,
- // the DataSource also requires a recipe. A recipe describes how each input
- // variable will be used in training an MLModel. Will the variable be included
- // or excluded from training? Will the variable be manipulated; for example,
- // will it be combined with another variable or will it be split apart into
- // word combinations? The recipe provides answers to these questions.
- //
- // You can't change an existing datasource, but you can copy and modify the
- // settings from an existing Amazon Redshift datasource to create a new datasource.
- // To do so, call GetDataSource for an existing datasource and copy the values
- // to a CreateDataSource call. Change the settings that you want to change and
- // make sure that all required fields have the appropriate values.
- func (c *MachineLearning) CreateDataSourceFromRedshift(input *CreateDataSourceFromRedshiftInput) (*CreateDataSourceFromRedshiftOutput, error) {
- req, out := c.CreateDataSourceFromRedshiftRequest(input)
- err := req.Send()
- return out, err
- }
- const opCreateDataSourceFromS3 = "CreateDataSourceFromS3"
- // CreateDataSourceFromS3Request generates a "aws/request.Request" representing the
- // client's request for the CreateDataSourceFromS3 operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the CreateDataSourceFromS3 method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the CreateDataSourceFromS3Request method.
- // req, resp := client.CreateDataSourceFromS3Request(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) CreateDataSourceFromS3Request(input *CreateDataSourceFromS3Input) (req *request.Request, output *CreateDataSourceFromS3Output) {
- op := &request.Operation{
- Name: opCreateDataSourceFromS3,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &CreateDataSourceFromS3Input{}
- }
- req = c.newRequest(op, input, output)
- output = &CreateDataSourceFromS3Output{}
- req.Data = output
- return
- }
- // Creates a DataSource object. A DataSource references data that can be used
- // to perform CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations.
- //
- // CreateDataSourceFromS3 is an asynchronous operation. In response to CreateDataSourceFromS3,
- // Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource
- // status to PENDING. After the DataSource has been created and is ready for
- // use, Amazon ML sets the Status parameter to COMPLETED. DataSource in the
- // COMPLETED or PENDING state can be used to perform only CreateMLModel, CreateEvaluation
- // or CreateBatchPrediction operations.
- //
- // If Amazon ML can't accept the input source, it sets the Status parameter
- // to FAILED and includes an error message in the Message attribute of the GetDataSource
- // operation response.
- //
- // The observation data used in a DataSource should be ready to use; that is,
- // it should have a consistent structure, and missing data values should be
- // kept to a minimum. The observation data must reside in one or more .csv files
- // in an Amazon Simple Storage Service (Amazon S3) location, along with a schema
- // that describes the data items by name and type. The same schema must be used
- // for all of the data files referenced by the DataSource.
- //
- // After the DataSource has been created, it's ready to use in evaluations
- // and batch predictions. If you plan to use the DataSource to train an MLModel,
- // the DataSource also needs a recipe. A recipe describes how each input variable
- // will be used in training an MLModel. Will the variable be included or excluded
- // from training? Will the variable be manipulated; for example, will it be
- // combined with another variable or will it be split apart into word combinations?
- // The recipe provides answers to these questions.
- func (c *MachineLearning) CreateDataSourceFromS3(input *CreateDataSourceFromS3Input) (*CreateDataSourceFromS3Output, error) {
- req, out := c.CreateDataSourceFromS3Request(input)
- err := req.Send()
- return out, err
- }
- const opCreateEvaluation = "CreateEvaluation"
- // CreateEvaluationRequest generates a "aws/request.Request" representing the
- // client's request for the CreateEvaluation operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the CreateEvaluation method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the CreateEvaluationRequest method.
- // req, resp := client.CreateEvaluationRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) CreateEvaluationRequest(input *CreateEvaluationInput) (req *request.Request, output *CreateEvaluationOutput) {
- op := &request.Operation{
- Name: opCreateEvaluation,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &CreateEvaluationInput{}
- }
- req = c.newRequest(op, input, output)
- output = &CreateEvaluationOutput{}
- req.Data = output
- return
- }
- // Creates a new Evaluation of an MLModel. An MLModel is evaluated on a set
- // of observations associated to a DataSource. Like a DataSource for an MLModel,
- // the DataSource for an Evaluation contains values for the Target Variable.
- // The Evaluation compares the predicted result for each observation to the
- // actual outcome and provides a summary so that you know how effective the
- // MLModel functions on the test data. Evaluation generates a relevant performance
- // metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on
- // the corresponding MLModelType: BINARY, REGRESSION or MULTICLASS.
- //
- // CreateEvaluation is an asynchronous operation. In response to CreateEvaluation,
- // Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation
- // status to PENDING. After the Evaluation is created and ready for use, Amazon
- // ML sets the status to COMPLETED.
- //
- // You can use the GetEvaluation operation to check progress of the evaluation
- // during the creation operation.
- func (c *MachineLearning) CreateEvaluation(input *CreateEvaluationInput) (*CreateEvaluationOutput, error) {
- req, out := c.CreateEvaluationRequest(input)
- err := req.Send()
- return out, err
- }
- const opCreateMLModel = "CreateMLModel"
- // CreateMLModelRequest generates a "aws/request.Request" representing the
- // client's request for the CreateMLModel operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the CreateMLModel method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the CreateMLModelRequest method.
- // req, resp := client.CreateMLModelRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) CreateMLModelRequest(input *CreateMLModelInput) (req *request.Request, output *CreateMLModelOutput) {
- op := &request.Operation{
- Name: opCreateMLModel,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &CreateMLModelInput{}
- }
- req = c.newRequest(op, input, output)
- output = &CreateMLModelOutput{}
- req.Data = output
- return
- }
- // Creates a new MLModel using the DataSource and the recipe as information
- // sources.
- //
- // An MLModel is nearly immutable. Users can update only the MLModelName and
- // the ScoreThreshold in an MLModel without creating a new MLModel.
- //
- // CreateMLModel is an asynchronous operation. In response to CreateMLModel,
- // Amazon Machine Learning (Amazon ML) immediately returns and sets the MLModel
- // status to PENDING. After the MLModel has been created and ready is for use,
- // Amazon ML sets the status to COMPLETED.
- //
- // You can use the GetMLModel operation to check the progress of the MLModel
- // during the creation operation.
- //
- // CreateMLModel requires a DataSource with computed statistics, which can
- // be created by setting ComputeStatistics to true in CreateDataSourceFromRDS,
- // CreateDataSourceFromS3, or CreateDataSourceFromRedshift operations.
- func (c *MachineLearning) CreateMLModel(input *CreateMLModelInput) (*CreateMLModelOutput, error) {
- req, out := c.CreateMLModelRequest(input)
- err := req.Send()
- return out, err
- }
- const opCreateRealtimeEndpoint = "CreateRealtimeEndpoint"
- // CreateRealtimeEndpointRequest generates a "aws/request.Request" representing the
- // client's request for the CreateRealtimeEndpoint operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the CreateRealtimeEndpoint method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the CreateRealtimeEndpointRequest method.
- // req, resp := client.CreateRealtimeEndpointRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) CreateRealtimeEndpointRequest(input *CreateRealtimeEndpointInput) (req *request.Request, output *CreateRealtimeEndpointOutput) {
- op := &request.Operation{
- Name: opCreateRealtimeEndpoint,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &CreateRealtimeEndpointInput{}
- }
- req = c.newRequest(op, input, output)
- output = &CreateRealtimeEndpointOutput{}
- req.Data = output
- return
- }
- // Creates a real-time endpoint for the MLModel. The endpoint contains the URI
- // of the MLModel; that is, the location to send real-time prediction requests
- // for the specified MLModel.
- func (c *MachineLearning) CreateRealtimeEndpoint(input *CreateRealtimeEndpointInput) (*CreateRealtimeEndpointOutput, error) {
- req, out := c.CreateRealtimeEndpointRequest(input)
- err := req.Send()
- return out, err
- }
- const opDeleteBatchPrediction = "DeleteBatchPrediction"
- // DeleteBatchPredictionRequest generates a "aws/request.Request" representing the
- // client's request for the DeleteBatchPrediction operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the DeleteBatchPrediction method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the DeleteBatchPredictionRequest method.
- // req, resp := client.DeleteBatchPredictionRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) DeleteBatchPredictionRequest(input *DeleteBatchPredictionInput) (req *request.Request, output *DeleteBatchPredictionOutput) {
- op := &request.Operation{
- Name: opDeleteBatchPrediction,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &DeleteBatchPredictionInput{}
- }
- req = c.newRequest(op, input, output)
- output = &DeleteBatchPredictionOutput{}
- req.Data = output
- return
- }
- // Assigns the DELETED status to a BatchPrediction, rendering it unusable.
- //
- // After using the DeleteBatchPrediction operation, you can use the GetBatchPrediction
- // operation to verify that the status of the BatchPrediction changed to DELETED.
- //
- // Caution: The result of the DeleteBatchPrediction operation is irreversible.
- func (c *MachineLearning) DeleteBatchPrediction(input *DeleteBatchPredictionInput) (*DeleteBatchPredictionOutput, error) {
- req, out := c.DeleteBatchPredictionRequest(input)
- err := req.Send()
- return out, err
- }
- const opDeleteDataSource = "DeleteDataSource"
- // DeleteDataSourceRequest generates a "aws/request.Request" representing the
- // client's request for the DeleteDataSource operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the DeleteDataSource method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the DeleteDataSourceRequest method.
- // req, resp := client.DeleteDataSourceRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) DeleteDataSourceRequest(input *DeleteDataSourceInput) (req *request.Request, output *DeleteDataSourceOutput) {
- op := &request.Operation{
- Name: opDeleteDataSource,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &DeleteDataSourceInput{}
- }
- req = c.newRequest(op, input, output)
- output = &DeleteDataSourceOutput{}
- req.Data = output
- return
- }
- // Assigns the DELETED status to a DataSource, rendering it unusable.
- //
- // After using the DeleteDataSource operation, you can use the GetDataSource
- // operation to verify that the status of the DataSource changed to DELETED.
- //
- // Caution: The results of the DeleteDataSource operation are irreversible.
- func (c *MachineLearning) DeleteDataSource(input *DeleteDataSourceInput) (*DeleteDataSourceOutput, error) {
- req, out := c.DeleteDataSourceRequest(input)
- err := req.Send()
- return out, err
- }
- const opDeleteEvaluation = "DeleteEvaluation"
- // DeleteEvaluationRequest generates a "aws/request.Request" representing the
- // client's request for the DeleteEvaluation operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the DeleteEvaluation method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the DeleteEvaluationRequest method.
- // req, resp := client.DeleteEvaluationRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) DeleteEvaluationRequest(input *DeleteEvaluationInput) (req *request.Request, output *DeleteEvaluationOutput) {
- op := &request.Operation{
- Name: opDeleteEvaluation,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &DeleteEvaluationInput{}
- }
- req = c.newRequest(op, input, output)
- output = &DeleteEvaluationOutput{}
- req.Data = output
- return
- }
- // Assigns the DELETED status to an Evaluation, rendering it unusable.
- //
- // After invoking the DeleteEvaluation operation, you can use the GetEvaluation
- // operation to verify that the status of the Evaluation changed to DELETED.
- //
- // Caution The results of the DeleteEvaluation operation are irreversible.
- func (c *MachineLearning) DeleteEvaluation(input *DeleteEvaluationInput) (*DeleteEvaluationOutput, error) {
- req, out := c.DeleteEvaluationRequest(input)
- err := req.Send()
- return out, err
- }
- const opDeleteMLModel = "DeleteMLModel"
- // DeleteMLModelRequest generates a "aws/request.Request" representing the
- // client's request for the DeleteMLModel operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the DeleteMLModel method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the DeleteMLModelRequest method.
- // req, resp := client.DeleteMLModelRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) DeleteMLModelRequest(input *DeleteMLModelInput) (req *request.Request, output *DeleteMLModelOutput) {
- op := &request.Operation{
- Name: opDeleteMLModel,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &DeleteMLModelInput{}
- }
- req = c.newRequest(op, input, output)
- output = &DeleteMLModelOutput{}
- req.Data = output
- return
- }
- // Assigns the DELETED status to an MLModel, rendering it unusable.
- //
- // After using the DeleteMLModel operation, you can use the GetMLModel operation
- // to verify that the status of the MLModel changed to DELETED.
- //
- // Caution: The result of the DeleteMLModel operation is irreversible.
- func (c *MachineLearning) DeleteMLModel(input *DeleteMLModelInput) (*DeleteMLModelOutput, error) {
- req, out := c.DeleteMLModelRequest(input)
- err := req.Send()
- return out, err
- }
- const opDeleteRealtimeEndpoint = "DeleteRealtimeEndpoint"
- // DeleteRealtimeEndpointRequest generates a "aws/request.Request" representing the
- // client's request for the DeleteRealtimeEndpoint operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the DeleteRealtimeEndpoint method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the DeleteRealtimeEndpointRequest method.
- // req, resp := client.DeleteRealtimeEndpointRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) DeleteRealtimeEndpointRequest(input *DeleteRealtimeEndpointInput) (req *request.Request, output *DeleteRealtimeEndpointOutput) {
- op := &request.Operation{
- Name: opDeleteRealtimeEndpoint,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &DeleteRealtimeEndpointInput{}
- }
- req = c.newRequest(op, input, output)
- output = &DeleteRealtimeEndpointOutput{}
- req.Data = output
- return
- }
- // Deletes a real time endpoint of an MLModel.
- func (c *MachineLearning) DeleteRealtimeEndpoint(input *DeleteRealtimeEndpointInput) (*DeleteRealtimeEndpointOutput, error) {
- req, out := c.DeleteRealtimeEndpointRequest(input)
- err := req.Send()
- return out, err
- }
- const opDeleteTags = "DeleteTags"
- // DeleteTagsRequest generates a "aws/request.Request" representing the
- // client's request for the DeleteTags operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the DeleteTags method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the DeleteTagsRequest method.
- // req, resp := client.DeleteTagsRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) DeleteTagsRequest(input *DeleteTagsInput) (req *request.Request, output *DeleteTagsOutput) {
- op := &request.Operation{
- Name: opDeleteTags,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &DeleteTagsInput{}
- }
- req = c.newRequest(op, input, output)
- output = &DeleteTagsOutput{}
- req.Data = output
- return
- }
- // Deletes the specified tags associated with an ML object. After this operation
- // is complete, you can't recover deleted tags.
- //
- // If you specify a tag that doesn't exist, Amazon ML ignores it.
- func (c *MachineLearning) DeleteTags(input *DeleteTagsInput) (*DeleteTagsOutput, error) {
- req, out := c.DeleteTagsRequest(input)
- err := req.Send()
- return out, err
- }
- const opDescribeBatchPredictions = "DescribeBatchPredictions"
- // DescribeBatchPredictionsRequest generates a "aws/request.Request" representing the
- // client's request for the DescribeBatchPredictions operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the DescribeBatchPredictions method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the DescribeBatchPredictionsRequest method.
- // req, resp := client.DescribeBatchPredictionsRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) DescribeBatchPredictionsRequest(input *DescribeBatchPredictionsInput) (req *request.Request, output *DescribeBatchPredictionsOutput) {
- op := &request.Operation{
- Name: opDescribeBatchPredictions,
- HTTPMethod: "POST",
- HTTPPath: "/",
- Paginator: &request.Paginator{
- InputTokens: []string{"NextToken"},
- OutputTokens: []string{"NextToken"},
- LimitToken: "Limit",
- TruncationToken: "",
- },
- }
- if input == nil {
- input = &DescribeBatchPredictionsInput{}
- }
- req = c.newRequest(op, input, output)
- output = &DescribeBatchPredictionsOutput{}
- req.Data = output
- return
- }
- // Returns a list of BatchPrediction operations that match the search criteria
- // in the request.
- func (c *MachineLearning) DescribeBatchPredictions(input *DescribeBatchPredictionsInput) (*DescribeBatchPredictionsOutput, error) {
- req, out := c.DescribeBatchPredictionsRequest(input)
- err := req.Send()
- return out, err
- }
- // DescribeBatchPredictionsPages iterates over the pages of a DescribeBatchPredictions operation,
- // calling the "fn" function with the response data for each page. To stop
- // iterating, return false from the fn function.
- //
- // See DescribeBatchPredictions method for more information on how to use this operation.
- //
- // Note: This operation can generate multiple requests to a service.
- //
- // // Example iterating over at most 3 pages of a DescribeBatchPredictions operation.
- // pageNum := 0
- // err := client.DescribeBatchPredictionsPages(params,
- // func(page *DescribeBatchPredictionsOutput, lastPage bool) bool {
- // pageNum++
- // fmt.Println(page)
- // return pageNum <= 3
- // })
- //
- func (c *MachineLearning) DescribeBatchPredictionsPages(input *DescribeBatchPredictionsInput, fn func(p *DescribeBatchPredictionsOutput, lastPage bool) (shouldContinue bool)) error {
- page, _ := c.DescribeBatchPredictionsRequest(input)
- page.Handlers.Build.PushBack(request.MakeAddToUserAgentFreeFormHandler("Paginator"))
- return page.EachPage(func(p interface{}, lastPage bool) bool {
- return fn(p.(*DescribeBatchPredictionsOutput), lastPage)
- })
- }
- const opDescribeDataSources = "DescribeDataSources"
- // DescribeDataSourcesRequest generates a "aws/request.Request" representing the
- // client's request for the DescribeDataSources operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the DescribeDataSources method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the DescribeDataSourcesRequest method.
- // req, resp := client.DescribeDataSourcesRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) DescribeDataSourcesRequest(input *DescribeDataSourcesInput) (req *request.Request, output *DescribeDataSourcesOutput) {
- op := &request.Operation{
- Name: opDescribeDataSources,
- HTTPMethod: "POST",
- HTTPPath: "/",
- Paginator: &request.Paginator{
- InputTokens: []string{"NextToken"},
- OutputTokens: []string{"NextToken"},
- LimitToken: "Limit",
- TruncationToken: "",
- },
- }
- if input == nil {
- input = &DescribeDataSourcesInput{}
- }
- req = c.newRequest(op, input, output)
- output = &DescribeDataSourcesOutput{}
- req.Data = output
- return
- }
- // Returns a list of DataSource that match the search criteria in the request.
- func (c *MachineLearning) DescribeDataSources(input *DescribeDataSourcesInput) (*DescribeDataSourcesOutput, error) {
- req, out := c.DescribeDataSourcesRequest(input)
- err := req.Send()
- return out, err
- }
- // DescribeDataSourcesPages iterates over the pages of a DescribeDataSources operation,
- // calling the "fn" function with the response data for each page. To stop
- // iterating, return false from the fn function.
- //
- // See DescribeDataSources method for more information on how to use this operation.
- //
- // Note: This operation can generate multiple requests to a service.
- //
- // // Example iterating over at most 3 pages of a DescribeDataSources operation.
- // pageNum := 0
- // err := client.DescribeDataSourcesPages(params,
- // func(page *DescribeDataSourcesOutput, lastPage bool) bool {
- // pageNum++
- // fmt.Println(page)
- // return pageNum <= 3
- // })
- //
- func (c *MachineLearning) DescribeDataSourcesPages(input *DescribeDataSourcesInput, fn func(p *DescribeDataSourcesOutput, lastPage bool) (shouldContinue bool)) error {
- page, _ := c.DescribeDataSourcesRequest(input)
- page.Handlers.Build.PushBack(request.MakeAddToUserAgentFreeFormHandler("Paginator"))
- return page.EachPage(func(p interface{}, lastPage bool) bool {
- return fn(p.(*DescribeDataSourcesOutput), lastPage)
- })
- }
- const opDescribeEvaluations = "DescribeEvaluations"
- // DescribeEvaluationsRequest generates a "aws/request.Request" representing the
- // client's request for the DescribeEvaluations operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the DescribeEvaluations method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the DescribeEvaluationsRequest method.
- // req, resp := client.DescribeEvaluationsRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) DescribeEvaluationsRequest(input *DescribeEvaluationsInput) (req *request.Request, output *DescribeEvaluationsOutput) {
- op := &request.Operation{
- Name: opDescribeEvaluations,
- HTTPMethod: "POST",
- HTTPPath: "/",
- Paginator: &request.Paginator{
- InputTokens: []string{"NextToken"},
- OutputTokens: []string{"NextToken"},
- LimitToken: "Limit",
- TruncationToken: "",
- },
- }
- if input == nil {
- input = &DescribeEvaluationsInput{}
- }
- req = c.newRequest(op, input, output)
- output = &DescribeEvaluationsOutput{}
- req.Data = output
- return
- }
- // Returns a list of DescribeEvaluations that match the search criteria in the
- // request.
- func (c *MachineLearning) DescribeEvaluations(input *DescribeEvaluationsInput) (*DescribeEvaluationsOutput, error) {
- req, out := c.DescribeEvaluationsRequest(input)
- err := req.Send()
- return out, err
- }
- // DescribeEvaluationsPages iterates over the pages of a DescribeEvaluations operation,
- // calling the "fn" function with the response data for each page. To stop
- // iterating, return false from the fn function.
- //
- // See DescribeEvaluations method for more information on how to use this operation.
- //
- // Note: This operation can generate multiple requests to a service.
- //
- // // Example iterating over at most 3 pages of a DescribeEvaluations operation.
- // pageNum := 0
- // err := client.DescribeEvaluationsPages(params,
- // func(page *DescribeEvaluationsOutput, lastPage bool) bool {
- // pageNum++
- // fmt.Println(page)
- // return pageNum <= 3
- // })
- //
- func (c *MachineLearning) DescribeEvaluationsPages(input *DescribeEvaluationsInput, fn func(p *DescribeEvaluationsOutput, lastPage bool) (shouldContinue bool)) error {
- page, _ := c.DescribeEvaluationsRequest(input)
- page.Handlers.Build.PushBack(request.MakeAddToUserAgentFreeFormHandler("Paginator"))
- return page.EachPage(func(p interface{}, lastPage bool) bool {
- return fn(p.(*DescribeEvaluationsOutput), lastPage)
- })
- }
- const opDescribeMLModels = "DescribeMLModels"
- // DescribeMLModelsRequest generates a "aws/request.Request" representing the
- // client's request for the DescribeMLModels operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the DescribeMLModels method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the DescribeMLModelsRequest method.
- // req, resp := client.DescribeMLModelsRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) DescribeMLModelsRequest(input *DescribeMLModelsInput) (req *request.Request, output *DescribeMLModelsOutput) {
- op := &request.Operation{
- Name: opDescribeMLModels,
- HTTPMethod: "POST",
- HTTPPath: "/",
- Paginator: &request.Paginator{
- InputTokens: []string{"NextToken"},
- OutputTokens: []string{"NextToken"},
- LimitToken: "Limit",
- TruncationToken: "",
- },
- }
- if input == nil {
- input = &DescribeMLModelsInput{}
- }
- req = c.newRequest(op, input, output)
- output = &DescribeMLModelsOutput{}
- req.Data = output
- return
- }
- // Returns a list of MLModel that match the search criteria in the request.
- func (c *MachineLearning) DescribeMLModels(input *DescribeMLModelsInput) (*DescribeMLModelsOutput, error) {
- req, out := c.DescribeMLModelsRequest(input)
- err := req.Send()
- return out, err
- }
- // DescribeMLModelsPages iterates over the pages of a DescribeMLModels operation,
- // calling the "fn" function with the response data for each page. To stop
- // iterating, return false from the fn function.
- //
- // See DescribeMLModels method for more information on how to use this operation.
- //
- // Note: This operation can generate multiple requests to a service.
- //
- // // Example iterating over at most 3 pages of a DescribeMLModels operation.
- // pageNum := 0
- // err := client.DescribeMLModelsPages(params,
- // func(page *DescribeMLModelsOutput, lastPage bool) bool {
- // pageNum++
- // fmt.Println(page)
- // return pageNum <= 3
- // })
- //
- func (c *MachineLearning) DescribeMLModelsPages(input *DescribeMLModelsInput, fn func(p *DescribeMLModelsOutput, lastPage bool) (shouldContinue bool)) error {
- page, _ := c.DescribeMLModelsRequest(input)
- page.Handlers.Build.PushBack(request.MakeAddToUserAgentFreeFormHandler("Paginator"))
- return page.EachPage(func(p interface{}, lastPage bool) bool {
- return fn(p.(*DescribeMLModelsOutput), lastPage)
- })
- }
- const opDescribeTags = "DescribeTags"
- // DescribeTagsRequest generates a "aws/request.Request" representing the
- // client's request for the DescribeTags operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the DescribeTags method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the DescribeTagsRequest method.
- // req, resp := client.DescribeTagsRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) DescribeTagsRequest(input *DescribeTagsInput) (req *request.Request, output *DescribeTagsOutput) {
- op := &request.Operation{
- Name: opDescribeTags,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &DescribeTagsInput{}
- }
- req = c.newRequest(op, input, output)
- output = &DescribeTagsOutput{}
- req.Data = output
- return
- }
- // Describes one or more of the tags for your Amazon ML object.
- func (c *MachineLearning) DescribeTags(input *DescribeTagsInput) (*DescribeTagsOutput, error) {
- req, out := c.DescribeTagsRequest(input)
- err := req.Send()
- return out, err
- }
- const opGetBatchPrediction = "GetBatchPrediction"
- // GetBatchPredictionRequest generates a "aws/request.Request" representing the
- // client's request for the GetBatchPrediction operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the GetBatchPrediction method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the GetBatchPredictionRequest method.
- // req, resp := client.GetBatchPredictionRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) GetBatchPredictionRequest(input *GetBatchPredictionInput) (req *request.Request, output *GetBatchPredictionOutput) {
- op := &request.Operation{
- Name: opGetBatchPrediction,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &GetBatchPredictionInput{}
- }
- req = c.newRequest(op, input, output)
- output = &GetBatchPredictionOutput{}
- req.Data = output
- return
- }
- // Returns a BatchPrediction that includes detailed metadata, status, and data
- // file information for a Batch Prediction request.
- func (c *MachineLearning) GetBatchPrediction(input *GetBatchPredictionInput) (*GetBatchPredictionOutput, error) {
- req, out := c.GetBatchPredictionRequest(input)
- err := req.Send()
- return out, err
- }
- const opGetDataSource = "GetDataSource"
- // GetDataSourceRequest generates a "aws/request.Request" representing the
- // client's request for the GetDataSource operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the GetDataSource method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the GetDataSourceRequest method.
- // req, resp := client.GetDataSourceRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) GetDataSourceRequest(input *GetDataSourceInput) (req *request.Request, output *GetDataSourceOutput) {
- op := &request.Operation{
- Name: opGetDataSource,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &GetDataSourceInput{}
- }
- req = c.newRequest(op, input, output)
- output = &GetDataSourceOutput{}
- req.Data = output
- return
- }
- // Returns a DataSource that includes metadata and data file information, as
- // well as the current status of the DataSource.
- //
- // GetDataSource provides results in normal or verbose format. The verbose
- // format adds the schema description and the list of files pointed to by the
- // DataSource to the normal format.
- func (c *MachineLearning) GetDataSource(input *GetDataSourceInput) (*GetDataSourceOutput, error) {
- req, out := c.GetDataSourceRequest(input)
- err := req.Send()
- return out, err
- }
- const opGetEvaluation = "GetEvaluation"
- // GetEvaluationRequest generates a "aws/request.Request" representing the
- // client's request for the GetEvaluation operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the GetEvaluation method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the GetEvaluationRequest method.
- // req, resp := client.GetEvaluationRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) GetEvaluationRequest(input *GetEvaluationInput) (req *request.Request, output *GetEvaluationOutput) {
- op := &request.Operation{
- Name: opGetEvaluation,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &GetEvaluationInput{}
- }
- req = c.newRequest(op, input, output)
- output = &GetEvaluationOutput{}
- req.Data = output
- return
- }
- // Returns an Evaluation that includes metadata as well as the current status
- // of the Evaluation.
- func (c *MachineLearning) GetEvaluation(input *GetEvaluationInput) (*GetEvaluationOutput, error) {
- req, out := c.GetEvaluationRequest(input)
- err := req.Send()
- return out, err
- }
- const opGetMLModel = "GetMLModel"
- // GetMLModelRequest generates a "aws/request.Request" representing the
- // client's request for the GetMLModel operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the GetMLModel method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the GetMLModelRequest method.
- // req, resp := client.GetMLModelRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) GetMLModelRequest(input *GetMLModelInput) (req *request.Request, output *GetMLModelOutput) {
- op := &request.Operation{
- Name: opGetMLModel,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &GetMLModelInput{}
- }
- req = c.newRequest(op, input, output)
- output = &GetMLModelOutput{}
- req.Data = output
- return
- }
- // Returns an MLModel that includes detailed metadata, data source information,
- // and the current status of the MLModel.
- //
- // GetMLModel provides results in normal or verbose format.
- func (c *MachineLearning) GetMLModel(input *GetMLModelInput) (*GetMLModelOutput, error) {
- req, out := c.GetMLModelRequest(input)
- err := req.Send()
- return out, err
- }
- const opPredict = "Predict"
- // PredictRequest generates a "aws/request.Request" representing the
- // client's request for the Predict operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the Predict method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the PredictRequest method.
- // req, resp := client.PredictRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) PredictRequest(input *PredictInput) (req *request.Request, output *PredictOutput) {
- op := &request.Operation{
- Name: opPredict,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &PredictInput{}
- }
- req = c.newRequest(op, input, output)
- output = &PredictOutput{}
- req.Data = output
- return
- }
- // Generates a prediction for the observation using the specified ML Model.
- //
- // Note Not all response parameters will be populated. Whether a response parameter
- // is populated depends on the type of model requested.
- func (c *MachineLearning) Predict(input *PredictInput) (*PredictOutput, error) {
- req, out := c.PredictRequest(input)
- err := req.Send()
- return out, err
- }
- const opUpdateBatchPrediction = "UpdateBatchPrediction"
- // UpdateBatchPredictionRequest generates a "aws/request.Request" representing the
- // client's request for the UpdateBatchPrediction operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the UpdateBatchPrediction method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the UpdateBatchPredictionRequest method.
- // req, resp := client.UpdateBatchPredictionRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) UpdateBatchPredictionRequest(input *UpdateBatchPredictionInput) (req *request.Request, output *UpdateBatchPredictionOutput) {
- op := &request.Operation{
- Name: opUpdateBatchPrediction,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &UpdateBatchPredictionInput{}
- }
- req = c.newRequest(op, input, output)
- output = &UpdateBatchPredictionOutput{}
- req.Data = output
- return
- }
- // Updates the BatchPredictionName of a BatchPrediction.
- //
- // You can use the GetBatchPrediction operation to view the contents of the
- // updated data element.
- func (c *MachineLearning) UpdateBatchPrediction(input *UpdateBatchPredictionInput) (*UpdateBatchPredictionOutput, error) {
- req, out := c.UpdateBatchPredictionRequest(input)
- err := req.Send()
- return out, err
- }
- const opUpdateDataSource = "UpdateDataSource"
- // UpdateDataSourceRequest generates a "aws/request.Request" representing the
- // client's request for the UpdateDataSource operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the UpdateDataSource method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the UpdateDataSourceRequest method.
- // req, resp := client.UpdateDataSourceRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) UpdateDataSourceRequest(input *UpdateDataSourceInput) (req *request.Request, output *UpdateDataSourceOutput) {
- op := &request.Operation{
- Name: opUpdateDataSource,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &UpdateDataSourceInput{}
- }
- req = c.newRequest(op, input, output)
- output = &UpdateDataSourceOutput{}
- req.Data = output
- return
- }
- // Updates the DataSourceName of a DataSource.
- //
- // You can use the GetDataSource operation to view the contents of the updated
- // data element.
- func (c *MachineLearning) UpdateDataSource(input *UpdateDataSourceInput) (*UpdateDataSourceOutput, error) {
- req, out := c.UpdateDataSourceRequest(input)
- err := req.Send()
- return out, err
- }
- const opUpdateEvaluation = "UpdateEvaluation"
- // UpdateEvaluationRequest generates a "aws/request.Request" representing the
- // client's request for the UpdateEvaluation operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the UpdateEvaluation method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the UpdateEvaluationRequest method.
- // req, resp := client.UpdateEvaluationRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) UpdateEvaluationRequest(input *UpdateEvaluationInput) (req *request.Request, output *UpdateEvaluationOutput) {
- op := &request.Operation{
- Name: opUpdateEvaluation,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &UpdateEvaluationInput{}
- }
- req = c.newRequest(op, input, output)
- output = &UpdateEvaluationOutput{}
- req.Data = output
- return
- }
- // Updates the EvaluationName of an Evaluation.
- //
- // You can use the GetEvaluation operation to view the contents of the updated
- // data element.
- func (c *MachineLearning) UpdateEvaluation(input *UpdateEvaluationInput) (*UpdateEvaluationOutput, error) {
- req, out := c.UpdateEvaluationRequest(input)
- err := req.Send()
- return out, err
- }
- const opUpdateMLModel = "UpdateMLModel"
- // UpdateMLModelRequest generates a "aws/request.Request" representing the
- // client's request for the UpdateMLModel operation. The "output" return
- // value can be used to capture response data after the request's "Send" method
- // is called.
- //
- // Creating a request object using this method should be used when you want to inject
- // custom logic into the request's lifecycle using a custom handler, or if you want to
- // access properties on the request object before or after sending the request. If
- // you just want the service response, call the UpdateMLModel method directly
- // instead.
- //
- // Note: You must call the "Send" method on the returned request object in order
- // to execute the request.
- //
- // // Example sending a request using the UpdateMLModelRequest method.
- // req, resp := client.UpdateMLModelRequest(params)
- //
- // err := req.Send()
- // if err == nil { // resp is now filled
- // fmt.Println(resp)
- // }
- //
- func (c *MachineLearning) UpdateMLModelRequest(input *UpdateMLModelInput) (req *request.Request, output *UpdateMLModelOutput) {
- op := &request.Operation{
- Name: opUpdateMLModel,
- HTTPMethod: "POST",
- HTTPPath: "/",
- }
- if input == nil {
- input = &UpdateMLModelInput{}
- }
- req = c.newRequest(op, input, output)
- output = &UpdateMLModelOutput{}
- req.Data = output
- return
- }
- // Updates the MLModelName and the ScoreThreshold of an MLModel.
- //
- // You can use the GetMLModel operation to view the contents of the updated
- // data element.
- func (c *MachineLearning) UpdateMLModel(input *UpdateMLModelInput) (*UpdateMLModelOutput, error) {
- req, out := c.UpdateMLModelRequest(input)
- err := req.Send()
- return out, err
- }
- type AddTagsInput struct {
- _ struct{} `type:"structure"`
- // The ID of the ML object to tag. For example, exampleModelId.
- ResourceId *string `min:"1" type:"string" required:"true"`
- // The type of the ML object to tag.
- ResourceType *string `type:"string" required:"true" enum:"TaggableResourceType"`
- // The key-value pairs to use to create tags. If you specify a key without specifying
- // a value, Amazon ML creates a tag with the specified key and a value of null.
- Tags []*Tag `type:"list" required:"true"`
- }
- // String returns the string representation
- func (s AddTagsInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s AddTagsInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *AddTagsInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "AddTagsInput"}
- if s.ResourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("ResourceId"))
- }
- if s.ResourceId != nil && len(*s.ResourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("ResourceId", 1))
- }
- if s.ResourceType == nil {
- invalidParams.Add(request.NewErrParamRequired("ResourceType"))
- }
- if s.Tags == nil {
- invalidParams.Add(request.NewErrParamRequired("Tags"))
- }
- if s.Tags != nil {
- for i, v := range s.Tags {
- if v == nil {
- continue
- }
- if err := v.Validate(); err != nil {
- invalidParams.AddNested(fmt.Sprintf("%s[%v]", "Tags", i), err.(request.ErrInvalidParams))
- }
- }
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Amazon ML returns the following elements.
- type AddTagsOutput struct {
- _ struct{} `type:"structure"`
- // The ID of the ML object that was tagged.
- ResourceId *string `min:"1" type:"string"`
- // The type of the ML object that was tagged.
- ResourceType *string `type:"string" enum:"TaggableResourceType"`
- }
- // String returns the string representation
- func (s AddTagsOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s AddTagsOutput) GoString() string {
- return s.String()
- }
- // Represents the output of a GetBatchPrediction operation.
- //
- // The content consists of the detailed metadata, the status, and the data
- // file information of a Batch Prediction.
- type BatchPrediction struct {
- _ struct{} `type:"structure"`
- // The ID of the DataSource that points to the group of observations to predict.
- BatchPredictionDataSourceId *string `min:"1" type:"string"`
- // The ID assigned to the BatchPrediction at creation. This value should be
- // identical to the value of the BatchPredictionID in the request.
- BatchPredictionId *string `min:"1" type:"string"`
- // Long integer type that is a 64-bit signed number.
- ComputeTime *int64 `type:"long"`
- // The time that the BatchPrediction was created. The time is expressed in epoch
- // time.
- CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The AWS user account that invoked the BatchPrediction. The account type can
- // be either an AWS root account or an AWS Identity and Access Management (IAM)
- // user account.
- CreatedByIamUser *string `type:"string"`
- // A timestamp represented in epoch time.
- FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The location of the data file or directory in Amazon Simple Storage Service
- // (Amazon S3).
- InputDataLocationS3 *string `type:"string"`
- // Long integer type that is a 64-bit signed number.
- InvalidRecordCount *int64 `type:"long"`
- // The time of the most recent edit to the BatchPrediction. The time is expressed
- // in epoch time.
- LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The ID of the MLModel that generated predictions for the BatchPrediction
- // request.
- MLModelId *string `min:"1" type:"string"`
- // A description of the most recent details about processing the batch prediction
- // request.
- Message *string `type:"string"`
- // A user-supplied name or description of the BatchPrediction.
- Name *string `type:"string"`
- // The location of an Amazon S3 bucket or directory to receive the operation
- // results. The following substrings are not allowed in the s3 key portion of
- // the outputURI field: ':', '//', '/./', '/../'.
- OutputUri *string `type:"string"`
- // A timestamp represented in epoch time.
- StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The status of the BatchPrediction. This element can have one of the following
- // values:
- //
- // PENDING - Amazon Machine Learning (Amazon ML) submitted a request to generate
- // predictions for a batch of observations. INPROGRESS - The process is underway.
- // FAILED - The request to perform a batch prediction did not run to completion.
- // It is not usable. COMPLETED - The batch prediction process completed successfully.
- // DELETED - The BatchPrediction is marked as deleted. It is not usable.
- Status *string `type:"string" enum:"EntityStatus"`
- // Long integer type that is a 64-bit signed number.
- TotalRecordCount *int64 `type:"long"`
- }
- // String returns the string representation
- func (s BatchPrediction) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s BatchPrediction) GoString() string {
- return s.String()
- }
- type CreateBatchPredictionInput struct {
- _ struct{} `type:"structure"`
- // The ID of the DataSource that points to the group of observations to predict.
- BatchPredictionDataSourceId *string `min:"1" type:"string" required:"true"`
- // A user-supplied ID that uniquely identifies the BatchPrediction.
- BatchPredictionId *string `min:"1" type:"string" required:"true"`
- // A user-supplied name or description of the BatchPrediction. BatchPredictionName
- // can only use the UTF-8 character set.
- BatchPredictionName *string `type:"string"`
- // The ID of the MLModel that will generate predictions for the group of observations.
- MLModelId *string `min:"1" type:"string" required:"true"`
- // The location of an Amazon Simple Storage Service (Amazon S3) bucket or directory
- // to store the batch prediction results. The following substrings are not allowed
- // in the s3 key portion of the outputURI field: ':', '//', '/./', '/../'.
- //
- // Amazon ML needs permissions to store and retrieve the logs on your behalf.
- // For information about how to set permissions, see the Amazon Machine Learning
- // Developer Guide (http://docs.aws.amazon.com/machine-learning/latest/dg).
- OutputUri *string `type:"string" required:"true"`
- }
- // String returns the string representation
- func (s CreateBatchPredictionInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateBatchPredictionInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *CreateBatchPredictionInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "CreateBatchPredictionInput"}
- if s.BatchPredictionDataSourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("BatchPredictionDataSourceId"))
- }
- if s.BatchPredictionDataSourceId != nil && len(*s.BatchPredictionDataSourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("BatchPredictionDataSourceId", 1))
- }
- if s.BatchPredictionId == nil {
- invalidParams.Add(request.NewErrParamRequired("BatchPredictionId"))
- }
- if s.BatchPredictionId != nil && len(*s.BatchPredictionId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("BatchPredictionId", 1))
- }
- if s.MLModelId == nil {
- invalidParams.Add(request.NewErrParamRequired("MLModelId"))
- }
- if s.MLModelId != nil && len(*s.MLModelId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1))
- }
- if s.OutputUri == nil {
- invalidParams.Add(request.NewErrParamRequired("OutputUri"))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a CreateBatchPrediction operation, and is an acknowledgement
- // that Amazon ML received the request.
- //
- // The CreateBatchPrediction operation is asynchronous. You can poll for status
- // updates by using the >GetBatchPrediction operation and checking the Status
- // parameter of the result.
- type CreateBatchPredictionOutput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the BatchPrediction. This value
- // is identical to the value of the BatchPredictionId in the request.
- BatchPredictionId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s CreateBatchPredictionOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateBatchPredictionOutput) GoString() string {
- return s.String()
- }
- type CreateDataSourceFromRDSInput struct {
- _ struct{} `type:"structure"`
- // The compute statistics for a DataSource. The statistics are generated from
- // the observation data referenced by a DataSource. Amazon ML uses the statistics
- // internally during MLModel training. This parameter must be set to true if
- // the DataSource needs to be used for MLModel training.
- ComputeStatistics *bool `type:"boolean"`
- // A user-supplied ID that uniquely identifies the DataSource. Typically, an
- // Amazon Resource Number (ARN) becomes the ID for a DataSource.
- DataSourceId *string `min:"1" type:"string" required:"true"`
- // A user-supplied name or description of the DataSource.
- DataSourceName *string `type:"string"`
- // The data specification of an Amazon RDS DataSource:
- //
- // DatabaseInformation - DatabaseName - The name of the Amazon RDS database.
- // InstanceIdentifier - A unique identifier for the Amazon RDS database instance.
- //
- //
- // DatabaseCredentials - AWS Identity and Access Management (IAM) credentials
- // that are used to connect to the Amazon RDS database.
- //
- // ResourceRole - A role (DataPipelineDefaultResourceRole) assumed by an EC2
- // instance to carry out the copy task from Amazon RDS to Amazon Simple Storage
- // Service (Amazon S3). For more information, see Role templates (http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html)
- // for data pipelines.
- //
- // ServiceRole - A role (DataPipelineDefaultRole) assumed by the AWS Data Pipeline
- // service to monitor the progress of the copy task from Amazon RDS to Amazon
- // S3. For more information, see Role templates (http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html)
- // for data pipelines.
- //
- // SecurityInfo - The security information to use to access an RDS DB instance.
- // You need to set up appropriate ingress rules for the security entity IDs
- // provided to allow access to the Amazon RDS instance. Specify a [SubnetId,
- // SecurityGroupIds] pair for a VPC-based RDS DB instance.
- //
- // SelectSqlQuery - A query that is used to retrieve the observation data for
- // the Datasource.
- //
- // S3StagingLocation - The Amazon S3 location for staging Amazon RDS data.
- // The data retrieved from Amazon RDS using SelectSqlQuery is stored in this
- // location.
- //
- // DataSchemaUri - The Amazon S3 location of the DataSchema.
- //
- // DataSchema - A JSON string representing the schema. This is not required
- // if DataSchemaUri is specified.
- //
- // DataRearrangement - A JSON string that represents the splitting and rearrangement
- // requirements for the Datasource.
- //
- // Sample - "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
- RDSData *RDSDataSpec `type:"structure" required:"true"`
- // The role that Amazon ML assumes on behalf of the user to create and activate
- // a data pipeline in the user's account and copy data using the SelectSqlQuery
- // query from Amazon RDS to Amazon S3.
- RoleARN *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s CreateDataSourceFromRDSInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateDataSourceFromRDSInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *CreateDataSourceFromRDSInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "CreateDataSourceFromRDSInput"}
- if s.DataSourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("DataSourceId"))
- }
- if s.DataSourceId != nil && len(*s.DataSourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("DataSourceId", 1))
- }
- if s.RDSData == nil {
- invalidParams.Add(request.NewErrParamRequired("RDSData"))
- }
- if s.RoleARN == nil {
- invalidParams.Add(request.NewErrParamRequired("RoleARN"))
- }
- if s.RoleARN != nil && len(*s.RoleARN) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("RoleARN", 1))
- }
- if s.RDSData != nil {
- if err := s.RDSData.Validate(); err != nil {
- invalidParams.AddNested("RDSData", err.(request.ErrInvalidParams))
- }
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a CreateDataSourceFromRDS operation, and is an acknowledgement
- // that Amazon ML received the request.
- //
- // The CreateDataSourceFromRDS> operation is asynchronous. You can poll for
- // updates by using the GetBatchPrediction operation and checking the Status
- // parameter. You can inspect the Message when Status shows up as FAILED. You
- // can also check the progress of the copy operation by going to the DataPipeline
- // console and looking up the pipeline using the pipelineId from the describe
- // call.
- type CreateDataSourceFromRDSOutput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the datasource. This value should
- // be identical to the value of the DataSourceID in the request.
- DataSourceId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s CreateDataSourceFromRDSOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateDataSourceFromRDSOutput) GoString() string {
- return s.String()
- }
- type CreateDataSourceFromRedshiftInput struct {
- _ struct{} `type:"structure"`
- // The compute statistics for a DataSource. The statistics are generated from
- // the observation data referenced by a DataSource. Amazon ML uses the statistics
- // internally during MLModel training. This parameter must be set to true if
- // the DataSource needs to be used for MLModel training.
- ComputeStatistics *bool `type:"boolean"`
- // A user-supplied ID that uniquely identifies the DataSource.
- DataSourceId *string `min:"1" type:"string" required:"true"`
- // A user-supplied name or description of the DataSource.
- DataSourceName *string `type:"string"`
- // The data specification of an Amazon Redshift DataSource:
- //
- // DatabaseInformation - DatabaseName - The name of the Amazon Redshift
- // database. ClusterIdentifier - The unique ID for the Amazon Redshift cluster.
- //
- // DatabaseCredentials - The AWS Identity and Access Management (IAM) credentials
- // that are used to connect to the Amazon Redshift database.
- //
- // SelectSqlQuery - The query that is used to retrieve the observation data
- // for the Datasource.
- //
- // S3StagingLocation - The Amazon Simple Storage Service (Amazon S3) location
- // for staging Amazon Redshift data. The data retrieved from Amazon Redshift
- // using the SelectSqlQuery query is stored in this location.
- //
- // DataSchemaUri - The Amazon S3 location of the DataSchema.
- //
- // DataSchema - A JSON string representing the schema. This is not required
- // if DataSchemaUri is specified.
- //
- // DataRearrangement - A JSON string that represents the splitting and rearrangement
- // requirements for the DataSource.
- //
- // Sample - "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
- DataSpec *RedshiftDataSpec `type:"structure" required:"true"`
- // A fully specified role Amazon Resource Name (ARN). Amazon ML assumes the
- // role on behalf of the user to create the following:
- //
- // A security group to allow Amazon ML to execute the SelectSqlQuery query
- // on an Amazon Redshift cluster
- //
- // An Amazon S3 bucket policy to grant Amazon ML read/write permissions on
- // the S3StagingLocation
- RoleARN *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s CreateDataSourceFromRedshiftInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateDataSourceFromRedshiftInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *CreateDataSourceFromRedshiftInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "CreateDataSourceFromRedshiftInput"}
- if s.DataSourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("DataSourceId"))
- }
- if s.DataSourceId != nil && len(*s.DataSourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("DataSourceId", 1))
- }
- if s.DataSpec == nil {
- invalidParams.Add(request.NewErrParamRequired("DataSpec"))
- }
- if s.RoleARN == nil {
- invalidParams.Add(request.NewErrParamRequired("RoleARN"))
- }
- if s.RoleARN != nil && len(*s.RoleARN) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("RoleARN", 1))
- }
- if s.DataSpec != nil {
- if err := s.DataSpec.Validate(); err != nil {
- invalidParams.AddNested("DataSpec", err.(request.ErrInvalidParams))
- }
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a CreateDataSourceFromRedshift operation, and is
- // an acknowledgement that Amazon ML received the request.
- //
- // The CreateDataSourceFromRedshift operation is asynchronous. You can poll
- // for updates by using the GetBatchPrediction operation and checking the Status
- // parameter.
- type CreateDataSourceFromRedshiftOutput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the datasource. This value should
- // be identical to the value of the DataSourceID in the request.
- DataSourceId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s CreateDataSourceFromRedshiftOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateDataSourceFromRedshiftOutput) GoString() string {
- return s.String()
- }
- type CreateDataSourceFromS3Input struct {
- _ struct{} `type:"structure"`
- // The compute statistics for a DataSource. The statistics are generated from
- // the observation data referenced by a DataSource. Amazon ML uses the statistics
- // internally during MLModel training. This parameter must be set to true if
- // the DataSource needs to be used for MLModel training.
- ComputeStatistics *bool `type:"boolean"`
- // A user-supplied identifier that uniquely identifies the DataSource.
- DataSourceId *string `min:"1" type:"string" required:"true"`
- // A user-supplied name or description of the DataSource.
- DataSourceName *string `type:"string"`
- // The data specification of a DataSource:
- //
- // DataLocationS3 - The Amazon S3 location of the observation data.
- //
- // DataSchemaLocationS3 - The Amazon S3 location of the DataSchema.
- //
- // DataSchema - A JSON string representing the schema. This is not required
- // if DataSchemaUri is specified.
- //
- // DataRearrangement - A JSON string that represents the splitting and rearrangement
- // requirements for the Datasource.
- //
- // Sample - "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
- DataSpec *S3DataSpec `type:"structure" required:"true"`
- }
- // String returns the string representation
- func (s CreateDataSourceFromS3Input) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateDataSourceFromS3Input) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *CreateDataSourceFromS3Input) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "CreateDataSourceFromS3Input"}
- if s.DataSourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("DataSourceId"))
- }
- if s.DataSourceId != nil && len(*s.DataSourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("DataSourceId", 1))
- }
- if s.DataSpec == nil {
- invalidParams.Add(request.NewErrParamRequired("DataSpec"))
- }
- if s.DataSpec != nil {
- if err := s.DataSpec.Validate(); err != nil {
- invalidParams.AddNested("DataSpec", err.(request.ErrInvalidParams))
- }
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a CreateDataSourceFromS3 operation, and is an acknowledgement
- // that Amazon ML received the request.
- //
- // The CreateDataSourceFromS3 operation is asynchronous. You can poll for updates
- // by using the GetBatchPrediction operation and checking the Status parameter.
- type CreateDataSourceFromS3Output struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the DataSource. This value should
- // be identical to the value of the DataSourceID in the request.
- DataSourceId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s CreateDataSourceFromS3Output) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateDataSourceFromS3Output) GoString() string {
- return s.String()
- }
- type CreateEvaluationInput struct {
- _ struct{} `type:"structure"`
- // The ID of the DataSource for the evaluation. The schema of the DataSource
- // must match the schema used to create the MLModel.
- EvaluationDataSourceId *string `min:"1" type:"string" required:"true"`
- // A user-supplied ID that uniquely identifies the Evaluation.
- EvaluationId *string `min:"1" type:"string" required:"true"`
- // A user-supplied name or description of the Evaluation.
- EvaluationName *string `type:"string"`
- // The ID of the MLModel to evaluate.
- //
- // The schema used in creating the MLModel must match the schema of the DataSource
- // used in the Evaluation.
- MLModelId *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s CreateEvaluationInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateEvaluationInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *CreateEvaluationInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "CreateEvaluationInput"}
- if s.EvaluationDataSourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("EvaluationDataSourceId"))
- }
- if s.EvaluationDataSourceId != nil && len(*s.EvaluationDataSourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("EvaluationDataSourceId", 1))
- }
- if s.EvaluationId == nil {
- invalidParams.Add(request.NewErrParamRequired("EvaluationId"))
- }
- if s.EvaluationId != nil && len(*s.EvaluationId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("EvaluationId", 1))
- }
- if s.MLModelId == nil {
- invalidParams.Add(request.NewErrParamRequired("MLModelId"))
- }
- if s.MLModelId != nil && len(*s.MLModelId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a CreateEvaluation operation, and is an acknowledgement
- // that Amazon ML received the request.
- //
- // CreateEvaluation operation is asynchronous. You can poll for status updates
- // by using the GetEvcaluation operation and checking the Status parameter.
- type CreateEvaluationOutput struct {
- _ struct{} `type:"structure"`
- // The user-supplied ID that uniquely identifies the Evaluation. This value
- // should be identical to the value of the EvaluationId in the request.
- EvaluationId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s CreateEvaluationOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateEvaluationOutput) GoString() string {
- return s.String()
- }
- type CreateMLModelInput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the MLModel.
- MLModelId *string `min:"1" type:"string" required:"true"`
- // A user-supplied name or description of the MLModel.
- MLModelName *string `type:"string"`
- // The category of supervised learning that this MLModel will address. Choose
- // from the following types:
- //
- // Choose REGRESSION if the MLModel will be used to predict a numeric value.
- // Choose BINARY if the MLModel result has two possible values. Choose MULTICLASS
- // if the MLModel result has a limited number of values. For more information,
- // see the Amazon Machine Learning Developer Guide (http://docs.aws.amazon.com/machine-learning/latest/dg).
- MLModelType *string `type:"string" required:"true" enum:"MLModelType"`
- // A list of the training parameters in the MLModel. The list is implemented
- // as a map of key-value pairs.
- //
- // The following is the current set of training parameters:
- //
- // sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending
- // on the input data, the size of the model might affect its performance.
- //
- // The value is an integer that ranges from 100000 to 2147483648. The default
- // value is 33554432.
- //
- // sgd.maxPasses - The number of times that the training process traverses
- // the observations to build the MLModel. The value is an integer that ranges
- // from 1 to 10000. The default value is 10.
- //
- // sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling
- // the data improves a model's ability to find the optimal solution for a variety
- // of data types. The valid values are auto and none. The default value is none.
- // We strongly recommend that you shuffle your data.
- //
- // sgd.l1RegularizationAmount - The coefficient regularization L1 norm. It
- // controls overfitting the data by penalizing large coefficients. This tends
- // to drive coefficients to zero, resulting in a sparse feature set. If you
- // use this parameter, start by specifying a small value, such as 1.0E-08.
- //
- // The value is a double that ranges from 0 to MAX_DOUBLE. The default is to
- // not use L1 normalization. This parameter can't be used when L2 is specified.
- // Use this parameter sparingly.
- //
- // sgd.l2RegularizationAmount - The coefficient regularization L2 norm. It
- // controls overfitting the data by penalizing large coefficients. This tends
- // to drive coefficients to small, nonzero values. If you use this parameter,
- // start by specifying a small value, such as 1.0E-08.
- //
- // The value is a double that ranges from 0 to MAX_DOUBLE. The default is to
- // not use L2 normalization. This parameter can't be used when L1 is specified.
- // Use this parameter sparingly.
- Parameters map[string]*string `type:"map"`
- // The data recipe for creating the MLModel. You must specify either the recipe
- // or its URI. If you don't specify a recipe or its URI, Amazon ML creates a
- // default.
- Recipe *string `type:"string"`
- // The Amazon Simple Storage Service (Amazon S3) location and file name that
- // contains the MLModel recipe. You must specify either the recipe or its URI.
- // If you don't specify a recipe or its URI, Amazon ML creates a default.
- RecipeUri *string `type:"string"`
- // The DataSource that points to the training data.
- TrainingDataSourceId *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s CreateMLModelInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateMLModelInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *CreateMLModelInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "CreateMLModelInput"}
- if s.MLModelId == nil {
- invalidParams.Add(request.NewErrParamRequired("MLModelId"))
- }
- if s.MLModelId != nil && len(*s.MLModelId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1))
- }
- if s.MLModelType == nil {
- invalidParams.Add(request.NewErrParamRequired("MLModelType"))
- }
- if s.TrainingDataSourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("TrainingDataSourceId"))
- }
- if s.TrainingDataSourceId != nil && len(*s.TrainingDataSourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("TrainingDataSourceId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a CreateMLModel operation, and is an acknowledgement
- // that Amazon ML received the request.
- //
- // The CreateMLModel operation is asynchronous. You can poll for status updates
- // by using the GetMLModel operation and checking the Status parameter.
- type CreateMLModelOutput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the MLModel. This value should
- // be identical to the value of the MLModelId in the request.
- MLModelId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s CreateMLModelOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateMLModelOutput) GoString() string {
- return s.String()
- }
- type CreateRealtimeEndpointInput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the MLModel during creation.
- MLModelId *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s CreateRealtimeEndpointInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateRealtimeEndpointInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *CreateRealtimeEndpointInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "CreateRealtimeEndpointInput"}
- if s.MLModelId == nil {
- invalidParams.Add(request.NewErrParamRequired("MLModelId"))
- }
- if s.MLModelId != nil && len(*s.MLModelId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of an CreateRealtimeEndpoint operation.
- //
- // The result contains the MLModelId and the endpoint information for the MLModel.
- //
- // The endpoint information includes the URI of the MLModel; that is, the
- // location to send online prediction requests for the specified MLModel.
- type CreateRealtimeEndpointOutput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the MLModel. This value should
- // be identical to the value of the MLModelId in the request.
- MLModelId *string `min:"1" type:"string"`
- // The endpoint information of the MLModel
- RealtimeEndpointInfo *RealtimeEndpointInfo `type:"structure"`
- }
- // String returns the string representation
- func (s CreateRealtimeEndpointOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s CreateRealtimeEndpointOutput) GoString() string {
- return s.String()
- }
- // Represents the output of the GetDataSource operation.
- //
- // The content consists of the detailed metadata and data file information
- // and the current status of the DataSource.
- type DataSource struct {
- _ struct{} `type:"structure"`
- // The parameter is true if statistics need to be generated from the observation
- // data.
- ComputeStatistics *bool `type:"boolean"`
- // Long integer type that is a 64-bit signed number.
- ComputeTime *int64 `type:"long"`
- // The time that the DataSource was created. The time is expressed in epoch
- // time.
- CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The AWS user account from which the DataSource was created. The account type
- // can be either an AWS root account or an AWS Identity and Access Management
- // (IAM) user account.
- CreatedByIamUser *string `type:"string"`
- // The location and name of the data in Amazon Simple Storage Service (Amazon
- // S3) that is used by a DataSource.
- DataLocationS3 *string `type:"string"`
- // A JSON string that represents the splitting and rearrangement requirement
- // used when this DataSource was created.
- DataRearrangement *string `type:"string"`
- // The total number of observations contained in the data files that the DataSource
- // references.
- DataSizeInBytes *int64 `type:"long"`
- // The ID that is assigned to the DataSource during creation.
- DataSourceId *string `min:"1" type:"string"`
- // A timestamp represented in epoch time.
- FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The time of the most recent edit to the BatchPrediction. The time is expressed
- // in epoch time.
- LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // A description of the most recent details about creating the DataSource.
- Message *string `type:"string"`
- // A user-supplied name or description of the DataSource.
- Name *string `type:"string"`
- // The number of data files referenced by the DataSource.
- NumberOfFiles *int64 `type:"long"`
- // The datasource details that are specific to Amazon RDS.
- RDSMetadata *RDSMetadata `type:"structure"`
- // Describes the DataSource details specific to Amazon Redshift.
- RedshiftMetadata *RedshiftMetadata `type:"structure"`
- // The Amazon Resource Name (ARN) of an AWS IAM Role (http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html#roles-about-termsandconcepts),
- // such as the following: arn:aws:iam::account:role/rolename.
- RoleARN *string `min:"1" type:"string"`
- // A timestamp represented in epoch time.
- StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The current status of the DataSource. This element can have one of the following
- // values:
- //
- // PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create
- // a DataSource. INPROGRESS - The creation process is underway. FAILED - The
- // request to create a DataSource did not run to completion. It is not usable.
- // COMPLETED - The creation process completed successfully. DELETED - The DataSource
- // is marked as deleted. It is not usable.
- Status *string `type:"string" enum:"EntityStatus"`
- }
- // String returns the string representation
- func (s DataSource) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DataSource) GoString() string {
- return s.String()
- }
- type DeleteBatchPredictionInput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the BatchPrediction.
- BatchPredictionId *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s DeleteBatchPredictionInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteBatchPredictionInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *DeleteBatchPredictionInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "DeleteBatchPredictionInput"}
- if s.BatchPredictionId == nil {
- invalidParams.Add(request.NewErrParamRequired("BatchPredictionId"))
- }
- if s.BatchPredictionId != nil && len(*s.BatchPredictionId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("BatchPredictionId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a DeleteBatchPrediction operation.
- //
- // You can use the GetBatchPrediction operation and check the value of the
- // Status parameter to see whether a BatchPrediction is marked as DELETED.
- type DeleteBatchPredictionOutput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the BatchPrediction. This value
- // should be identical to the value of the BatchPredictionID in the request.
- BatchPredictionId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s DeleteBatchPredictionOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteBatchPredictionOutput) GoString() string {
- return s.String()
- }
- type DeleteDataSourceInput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the DataSource.
- DataSourceId *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s DeleteDataSourceInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteDataSourceInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *DeleteDataSourceInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "DeleteDataSourceInput"}
- if s.DataSourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("DataSourceId"))
- }
- if s.DataSourceId != nil && len(*s.DataSourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("DataSourceId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a DeleteDataSource operation.
- type DeleteDataSourceOutput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the DataSource. This value should
- // be identical to the value of the DataSourceID in the request.
- DataSourceId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s DeleteDataSourceOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteDataSourceOutput) GoString() string {
- return s.String()
- }
- type DeleteEvaluationInput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the Evaluation to delete.
- EvaluationId *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s DeleteEvaluationInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteEvaluationInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *DeleteEvaluationInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "DeleteEvaluationInput"}
- if s.EvaluationId == nil {
- invalidParams.Add(request.NewErrParamRequired("EvaluationId"))
- }
- if s.EvaluationId != nil && len(*s.EvaluationId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("EvaluationId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a DeleteEvaluation operation. The output indicates
- // that Amazon Machine Learning (Amazon ML) received the request.
- //
- // You can use the GetEvaluation operation and check the value of the Status
- // parameter to see whether an Evaluation is marked as DELETED.
- type DeleteEvaluationOutput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the Evaluation. This value should
- // be identical to the value of the EvaluationId in the request.
- EvaluationId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s DeleteEvaluationOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteEvaluationOutput) GoString() string {
- return s.String()
- }
- type DeleteMLModelInput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the MLModel.
- MLModelId *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s DeleteMLModelInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteMLModelInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *DeleteMLModelInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "DeleteMLModelInput"}
- if s.MLModelId == nil {
- invalidParams.Add(request.NewErrParamRequired("MLModelId"))
- }
- if s.MLModelId != nil && len(*s.MLModelId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a DeleteMLModel operation.
- //
- // You can use the GetMLModel operation and check the value of the Status parameter
- // to see whether an MLModel is marked as DELETED.
- type DeleteMLModelOutput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the MLModel. This value should
- // be identical to the value of the MLModelID in the request.
- MLModelId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s DeleteMLModelOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteMLModelOutput) GoString() string {
- return s.String()
- }
- type DeleteRealtimeEndpointInput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the MLModel during creation.
- MLModelId *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s DeleteRealtimeEndpointInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteRealtimeEndpointInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *DeleteRealtimeEndpointInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "DeleteRealtimeEndpointInput"}
- if s.MLModelId == nil {
- invalidParams.Add(request.NewErrParamRequired("MLModelId"))
- }
- if s.MLModelId != nil && len(*s.MLModelId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of an DeleteRealtimeEndpoint operation.
- //
- // The result contains the MLModelId and the endpoint information for the MLModel.
- type DeleteRealtimeEndpointOutput struct {
- _ struct{} `type:"structure"`
- // A user-supplied ID that uniquely identifies the MLModel. This value should
- // be identical to the value of the MLModelId in the request.
- MLModelId *string `min:"1" type:"string"`
- // The endpoint information of the MLModel
- RealtimeEndpointInfo *RealtimeEndpointInfo `type:"structure"`
- }
- // String returns the string representation
- func (s DeleteRealtimeEndpointOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteRealtimeEndpointOutput) GoString() string {
- return s.String()
- }
- type DeleteTagsInput struct {
- _ struct{} `type:"structure"`
- // The ID of the tagged ML object. For example, exampleModelId.
- ResourceId *string `min:"1" type:"string" required:"true"`
- // The type of the tagged ML object.
- ResourceType *string `type:"string" required:"true" enum:"TaggableResourceType"`
- // One or more tags to delete.
- TagKeys []*string `type:"list" required:"true"`
- }
- // String returns the string representation
- func (s DeleteTagsInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteTagsInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *DeleteTagsInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "DeleteTagsInput"}
- if s.ResourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("ResourceId"))
- }
- if s.ResourceId != nil && len(*s.ResourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("ResourceId", 1))
- }
- if s.ResourceType == nil {
- invalidParams.Add(request.NewErrParamRequired("ResourceType"))
- }
- if s.TagKeys == nil {
- invalidParams.Add(request.NewErrParamRequired("TagKeys"))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Amazon ML returns the following elements.
- type DeleteTagsOutput struct {
- _ struct{} `type:"structure"`
- // The ID of the ML object from which tags were deleted.
- ResourceId *string `min:"1" type:"string"`
- // The type of the ML object from which tags were deleted.
- ResourceType *string `type:"string" enum:"TaggableResourceType"`
- }
- // String returns the string representation
- func (s DeleteTagsOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DeleteTagsOutput) GoString() string {
- return s.String()
- }
- type DescribeBatchPredictionsInput struct {
- _ struct{} `type:"structure"`
- // The equal to operator. The BatchPrediction results will have FilterVariable
- // values that exactly match the value specified with EQ.
- EQ *string `type:"string"`
- // Use one of the following variables to filter a list of BatchPrediction:
- //
- // CreatedAt - Sets the search criteria to the BatchPrediction creation date.
- // Status - Sets the search criteria to the BatchPrediction status. Name -
- // Sets the search criteria to the contents of the BatchPrediction Name. IAMUser
- // - Sets the search criteria to the user account that invoked the BatchPrediction
- // creation. MLModelId - Sets the search criteria to the MLModel used in the
- // BatchPrediction. DataSourceId - Sets the search criteria to the DataSource
- // used in the BatchPrediction. DataURI - Sets the search criteria to the data
- // file(s) used in the BatchPrediction. The URL can identify either a file or
- // an Amazon Simple Storage Solution (Amazon S3) bucket or directory.
- FilterVariable *string `type:"string" enum:"BatchPredictionFilterVariable"`
- // The greater than or equal to operator. The BatchPrediction results will have
- // FilterVariable values that are greater than or equal to the value specified
- // with GE.
- GE *string `type:"string"`
- // The greater than operator. The BatchPrediction results will have FilterVariable
- // values that are greater than the value specified with GT.
- GT *string `type:"string"`
- // The less than or equal to operator. The BatchPrediction results will have
- // FilterVariable values that are less than or equal to the value specified
- // with LE.
- LE *string `type:"string"`
- // The less than operator. The BatchPrediction results will have FilterVariable
- // values that are less than the value specified with LT.
- LT *string `type:"string"`
- // The number of pages of information to include in the result. The range of
- // acceptable values is 1 through 100. The default value is 100.
- Limit *int64 `min:"1" type:"integer"`
- // The not equal to operator. The BatchPrediction results will have FilterVariable
- // values not equal to the value specified with NE.
- NE *string `type:"string"`
- // An ID of the page in the paginated results.
- NextToken *string `type:"string"`
- // A string that is found at the beginning of a variable, such as Name or Id.
- //
- // For example, a Batch Prediction operation could have the Name 2014-09-09-HolidayGiftMailer.
- // To search for this BatchPrediction, select Name for the FilterVariable and
- // any of the following strings for the Prefix:
- //
- // 2014-09
- //
- // 2014-09-09
- //
- // 2014-09-09-Holiday
- Prefix *string `type:"string"`
- // A two-value parameter that determines the sequence of the resulting list
- // of MLModels.
- //
- // asc - Arranges the list in ascending order (A-Z, 0-9). dsc - Arranges
- // the list in descending order (Z-A, 9-0). Results are sorted by FilterVariable.
- SortOrder *string `type:"string" enum:"SortOrder"`
- }
- // String returns the string representation
- func (s DescribeBatchPredictionsInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DescribeBatchPredictionsInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *DescribeBatchPredictionsInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "DescribeBatchPredictionsInput"}
- if s.Limit != nil && *s.Limit < 1 {
- invalidParams.Add(request.NewErrParamMinValue("Limit", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a DescribeBatchPredictions operation. The content
- // is essentially a list of BatchPredictions.
- type DescribeBatchPredictionsOutput struct {
- _ struct{} `type:"structure"`
- // The ID of the next page in the paginated results that indicates at least
- // one more page follows.
- NextToken *string `type:"string"`
- // A list of BatchPrediction objects that meet the search criteria.
- Results []*BatchPrediction `type:"list"`
- }
- // String returns the string representation
- func (s DescribeBatchPredictionsOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DescribeBatchPredictionsOutput) GoString() string {
- return s.String()
- }
- type DescribeDataSourcesInput struct {
- _ struct{} `type:"structure"`
- // The equal to operator. The DataSource results will have FilterVariable values
- // that exactly match the value specified with EQ.
- EQ *string `type:"string"`
- // Use one of the following variables to filter a list of DataSource:
- //
- // CreatedAt - Sets the search criteria to DataSource creation dates. Status
- // - Sets the search criteria to DataSource statuses. Name - Sets the search
- // criteria to the contents of DataSource Name. DataUri - Sets the search
- // criteria to the URI of data files used to create the DataSource. The URI
- // can identify either a file or an Amazon Simple Storage Service (Amazon S3)
- // bucket or directory. IAMUser - Sets the search criteria to the user account
- // that invoked the DataSource creation.
- FilterVariable *string `type:"string" enum:"DataSourceFilterVariable"`
- // The greater than or equal to operator. The DataSource results will have FilterVariable
- // values that are greater than or equal to the value specified with GE.
- GE *string `type:"string"`
- // The greater than operator. The DataSource results will have FilterVariable
- // values that are greater than the value specified with GT.
- GT *string `type:"string"`
- // The less than or equal to operator. The DataSource results will have FilterVariable
- // values that are less than or equal to the value specified with LE.
- LE *string `type:"string"`
- // The less than operator. The DataSource results will have FilterVariable values
- // that are less than the value specified with LT.
- LT *string `type:"string"`
- // The maximum number of DataSource to include in the result.
- Limit *int64 `min:"1" type:"integer"`
- // The not equal to operator. The DataSource results will have FilterVariable
- // values not equal to the value specified with NE.
- NE *string `type:"string"`
- // The ID of the page in the paginated results.
- NextToken *string `type:"string"`
- // A string that is found at the beginning of a variable, such as Name or Id.
- //
- // For example, a DataSource could have the Name 2014-09-09-HolidayGiftMailer.
- // To search for this DataSource, select Name for the FilterVariable and any
- // of the following strings for the Prefix:
- //
- // 2014-09
- //
- // 2014-09-09
- //
- // 2014-09-09-Holiday
- Prefix *string `type:"string"`
- // A two-value parameter that determines the sequence of the resulting list
- // of DataSource.
- //
- // asc - Arranges the list in ascending order (A-Z, 0-9). dsc - Arranges
- // the list in descending order (Z-A, 9-0). Results are sorted by FilterVariable.
- SortOrder *string `type:"string" enum:"SortOrder"`
- }
- // String returns the string representation
- func (s DescribeDataSourcesInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DescribeDataSourcesInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *DescribeDataSourcesInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "DescribeDataSourcesInput"}
- if s.Limit != nil && *s.Limit < 1 {
- invalidParams.Add(request.NewErrParamMinValue("Limit", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the query results from a DescribeDataSources operation. The content
- // is essentially a list of DataSource.
- type DescribeDataSourcesOutput struct {
- _ struct{} `type:"structure"`
- // An ID of the next page in the paginated results that indicates at least one
- // more page follows.
- NextToken *string `type:"string"`
- // A list of DataSource that meet the search criteria.
- Results []*DataSource `type:"list"`
- }
- // String returns the string representation
- func (s DescribeDataSourcesOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DescribeDataSourcesOutput) GoString() string {
- return s.String()
- }
- type DescribeEvaluationsInput struct {
- _ struct{} `type:"structure"`
- // The equal to operator. The Evaluation results will have FilterVariable values
- // that exactly match the value specified with EQ.
- EQ *string `type:"string"`
- // Use one of the following variable to filter a list of Evaluation objects:
- //
- // CreatedAt - Sets the search criteria to the Evaluation creation date.
- // Status - Sets the search criteria to the Evaluation status. Name - Sets
- // the search criteria to the contents of Evaluation Name. IAMUser - Sets
- // the search criteria to the user account that invoked an Evaluation. MLModelId
- // - Sets the search criteria to the MLModel that was evaluated. DataSourceId
- // - Sets the search criteria to the DataSource used in Evaluation. DataUri
- // - Sets the search criteria to the data file(s) used in Evaluation. The URL
- // can identify either a file or an Amazon Simple Storage Solution (Amazon S3)
- // bucket or directory.
- FilterVariable *string `type:"string" enum:"EvaluationFilterVariable"`
- // The greater than or equal to operator. The Evaluation results will have FilterVariable
- // values that are greater than or equal to the value specified with GE.
- GE *string `type:"string"`
- // The greater than operator. The Evaluation results will have FilterVariable
- // values that are greater than the value specified with GT.
- GT *string `type:"string"`
- // The less than or equal to operator. The Evaluation results will have FilterVariable
- // values that are less than or equal to the value specified with LE.
- LE *string `type:"string"`
- // The less than operator. The Evaluation results will have FilterVariable values
- // that are less than the value specified with LT.
- LT *string `type:"string"`
- // The maximum number of Evaluation to include in the result.
- Limit *int64 `min:"1" type:"integer"`
- // The not equal to operator. The Evaluation results will have FilterVariable
- // values not equal to the value specified with NE.
- NE *string `type:"string"`
- // The ID of the page in the paginated results.
- NextToken *string `type:"string"`
- // A string that is found at the beginning of a variable, such as Name or Id.
- //
- // For example, an Evaluation could have the Name 2014-09-09-HolidayGiftMailer.
- // To search for this Evaluation, select Name for the FilterVariable and any
- // of the following strings for the Prefix:
- //
- // 2014-09
- //
- // 2014-09-09
- //
- // 2014-09-09-Holiday
- Prefix *string `type:"string"`
- // A two-value parameter that determines the sequence of the resulting list
- // of Evaluation.
- //
- // asc - Arranges the list in ascending order (A-Z, 0-9). dsc - Arranges
- // the list in descending order (Z-A, 9-0). Results are sorted by FilterVariable.
- SortOrder *string `type:"string" enum:"SortOrder"`
- }
- // String returns the string representation
- func (s DescribeEvaluationsInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DescribeEvaluationsInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *DescribeEvaluationsInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "DescribeEvaluationsInput"}
- if s.Limit != nil && *s.Limit < 1 {
- invalidParams.Add(request.NewErrParamMinValue("Limit", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the query results from a DescribeEvaluations operation. The content
- // is essentially a list of Evaluation.
- type DescribeEvaluationsOutput struct {
- _ struct{} `type:"structure"`
- // The ID of the next page in the paginated results that indicates at least
- // one more page follows.
- NextToken *string `type:"string"`
- // A list of Evaluation that meet the search criteria.
- Results []*Evaluation `type:"list"`
- }
- // String returns the string representation
- func (s DescribeEvaluationsOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DescribeEvaluationsOutput) GoString() string {
- return s.String()
- }
- type DescribeMLModelsInput struct {
- _ struct{} `type:"structure"`
- // The equal to operator. The MLModel results will have FilterVariable values
- // that exactly match the value specified with EQ.
- EQ *string `type:"string"`
- // Use one of the following variables to filter a list of MLModel:
- //
- // CreatedAt - Sets the search criteria to MLModel creation date. Status
- // - Sets the search criteria to MLModel status. Name - Sets the search criteria
- // to the contents of MLModel Name. IAMUser - Sets the search criteria to
- // the user account that invoked the MLModel creation. TrainingDataSourceId
- // - Sets the search criteria to the DataSource used to train one or more MLModel.
- // RealtimeEndpointStatus - Sets the search criteria to the MLModel real-time
- // endpoint status. MLModelType - Sets the search criteria to MLModel type:
- // binary, regression, or multi-class. Algorithm - Sets the search criteria
- // to the algorithm that the MLModel uses. TrainingDataURI - Sets the search
- // criteria to the data file(s) used in training a MLModel. The URL can identify
- // either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory.
- FilterVariable *string `type:"string" enum:"MLModelFilterVariable"`
- // The greater than or equal to operator. The MLModel results will have FilterVariable
- // values that are greater than or equal to the value specified with GE.
- GE *string `type:"string"`
- // The greater than operator. The MLModel results will have FilterVariable values
- // that are greater than the value specified with GT.
- GT *string `type:"string"`
- // The less than or equal to operator. The MLModel results will have FilterVariable
- // values that are less than or equal to the value specified with LE.
- LE *string `type:"string"`
- // The less than operator. The MLModel results will have FilterVariable values
- // that are less than the value specified with LT.
- LT *string `type:"string"`
- // The number of pages of information to include in the result. The range of
- // acceptable values is 1 through 100. The default value is 100.
- Limit *int64 `min:"1" type:"integer"`
- // The not equal to operator. The MLModel results will have FilterVariable values
- // not equal to the value specified with NE.
- NE *string `type:"string"`
- // The ID of the page in the paginated results.
- NextToken *string `type:"string"`
- // A string that is found at the beginning of a variable, such as Name or Id.
- //
- // For example, an MLModel could have the Name 2014-09-09-HolidayGiftMailer.
- // To search for this MLModel, select Name for the FilterVariable and any of
- // the following strings for the Prefix:
- //
- // 2014-09
- //
- // 2014-09-09
- //
- // 2014-09-09-Holiday
- Prefix *string `type:"string"`
- // A two-value parameter that determines the sequence of the resulting list
- // of MLModel.
- //
- // asc - Arranges the list in ascending order (A-Z, 0-9). dsc - Arranges
- // the list in descending order (Z-A, 9-0). Results are sorted by FilterVariable.
- SortOrder *string `type:"string" enum:"SortOrder"`
- }
- // String returns the string representation
- func (s DescribeMLModelsInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DescribeMLModelsInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *DescribeMLModelsInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "DescribeMLModelsInput"}
- if s.Limit != nil && *s.Limit < 1 {
- invalidParams.Add(request.NewErrParamMinValue("Limit", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a DescribeMLModels operation. The content is essentially
- // a list of MLModel.
- type DescribeMLModelsOutput struct {
- _ struct{} `type:"structure"`
- // The ID of the next page in the paginated results that indicates at least
- // one more page follows.
- NextToken *string `type:"string"`
- // A list of MLModel that meet the search criteria.
- Results []*MLModel `type:"list"`
- }
- // String returns the string representation
- func (s DescribeMLModelsOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DescribeMLModelsOutput) GoString() string {
- return s.String()
- }
- type DescribeTagsInput struct {
- _ struct{} `type:"structure"`
- // The ID of the ML object. For example, exampleModelId.
- ResourceId *string `min:"1" type:"string" required:"true"`
- // The type of the ML object.
- ResourceType *string `type:"string" required:"true" enum:"TaggableResourceType"`
- }
- // String returns the string representation
- func (s DescribeTagsInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DescribeTagsInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *DescribeTagsInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "DescribeTagsInput"}
- if s.ResourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("ResourceId"))
- }
- if s.ResourceId != nil && len(*s.ResourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("ResourceId", 1))
- }
- if s.ResourceType == nil {
- invalidParams.Add(request.NewErrParamRequired("ResourceType"))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Amazon ML returns the following elements.
- type DescribeTagsOutput struct {
- _ struct{} `type:"structure"`
- // The ID of the tagged ML object.
- ResourceId *string `min:"1" type:"string"`
- // The type of the tagged ML object.
- ResourceType *string `type:"string" enum:"TaggableResourceType"`
- // A list of tags associated with the ML object.
- Tags []*Tag `type:"list"`
- }
- // String returns the string representation
- func (s DescribeTagsOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s DescribeTagsOutput) GoString() string {
- return s.String()
- }
- // Represents the output of GetEvaluation operation.
- //
- // The content consists of the detailed metadata and data file information
- // and the current status of the Evaluation.
- type Evaluation struct {
- _ struct{} `type:"structure"`
- // Long integer type that is a 64-bit signed number.
- ComputeTime *int64 `type:"long"`
- // The time that the Evaluation was created. The time is expressed in epoch
- // time.
- CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The AWS user account that invoked the evaluation. The account type can be
- // either an AWS root account or an AWS Identity and Access Management (IAM)
- // user account.
- CreatedByIamUser *string `type:"string"`
- // The ID of the DataSource that is used to evaluate the MLModel.
- EvaluationDataSourceId *string `min:"1" type:"string"`
- // The ID that is assigned to the Evaluation at creation.
- EvaluationId *string `min:"1" type:"string"`
- // A timestamp represented in epoch time.
- FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The location and name of the data in Amazon Simple Storage Server (Amazon
- // S3) that is used in the evaluation.
- InputDataLocationS3 *string `type:"string"`
- // The time of the most recent edit to the Evaluation. The time is expressed
- // in epoch time.
- LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The ID of the MLModel that is the focus of the evaluation.
- MLModelId *string `min:"1" type:"string"`
- // A description of the most recent details about evaluating the MLModel.
- Message *string `type:"string"`
- // A user-supplied name or description of the Evaluation.
- Name *string `type:"string"`
- // Measurements of how well the MLModel performed, using observations referenced
- // by the DataSource. One of the following metrics is returned, based on the
- // type of the MLModel:
- //
- // BinaryAUC: A binary MLModel uses the Area Under the Curve (AUC) technique
- // to measure performance.
- //
- // RegressionRMSE: A regression MLModel uses the Root Mean Square Error (RMSE)
- // technique to measure performance. RMSE measures the difference between predicted
- // and actual values for a single variable.
- //
- // MulticlassAvgFScore: A multiclass MLModel uses the F1 score technique
- // to measure performance.
- //
- // For more information about performance metrics, please see the Amazon
- // Machine Learning Developer Guide (http://docs.aws.amazon.com/machine-learning/latest/dg).
- PerformanceMetrics *PerformanceMetrics `type:"structure"`
- // A timestamp represented in epoch time.
- StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The status of the evaluation. This element can have one of the following
- // values:
- //
- // PENDING - Amazon Machine Learning (Amazon ML) submitted a request to evaluate
- // an MLModel. INPROGRESS - The evaluation is underway. FAILED - The request
- // to evaluate an MLModel did not run to completion. It is not usable. COMPLETED
- // - The evaluation process completed successfully. DELETED - The Evaluation
- // is marked as deleted. It is not usable.
- Status *string `type:"string" enum:"EntityStatus"`
- }
- // String returns the string representation
- func (s Evaluation) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s Evaluation) GoString() string {
- return s.String()
- }
- type GetBatchPredictionInput struct {
- _ struct{} `type:"structure"`
- // An ID assigned to the BatchPrediction at creation.
- BatchPredictionId *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s GetBatchPredictionInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s GetBatchPredictionInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *GetBatchPredictionInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "GetBatchPredictionInput"}
- if s.BatchPredictionId == nil {
- invalidParams.Add(request.NewErrParamRequired("BatchPredictionId"))
- }
- if s.BatchPredictionId != nil && len(*s.BatchPredictionId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("BatchPredictionId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a GetBatchPrediction operation and describes a BatchPrediction.
- type GetBatchPredictionOutput struct {
- _ struct{} `type:"structure"`
- // The ID of the DataSource that was used to create the BatchPrediction.
- BatchPredictionDataSourceId *string `min:"1" type:"string"`
- // An ID assigned to the BatchPrediction at creation. This value should be identical
- // to the value of the BatchPredictionID in the request.
- BatchPredictionId *string `min:"1" type:"string"`
- // The approximate CPU time in milliseconds that Amazon Machine Learning spent
- // processing the BatchPrediction, normalized and scaled on computation resources.
- // ComputeTime is only available if the BatchPrediction is in the COMPLETED
- // state.
- ComputeTime *int64 `type:"long"`
- // The time when the BatchPrediction was created. The time is expressed in epoch
- // time.
- CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The AWS user account that invoked the BatchPrediction. The account type can
- // be either an AWS root account or an AWS Identity and Access Management (IAM)
- // user account.
- CreatedByIamUser *string `type:"string"`
- // The epoch time when Amazon Machine Learning marked the BatchPrediction as
- // COMPLETED or FAILED. FinishedAt is only available when the BatchPrediction
- // is in the COMPLETED or FAILED state.
- FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The location of the data file or directory in Amazon Simple Storage Service
- // (Amazon S3).
- InputDataLocationS3 *string `type:"string"`
- // The number of invalid records that Amazon Machine Learning saw while processing
- // the BatchPrediction.
- InvalidRecordCount *int64 `type:"long"`
- // The time of the most recent edit to BatchPrediction. The time is expressed
- // in epoch time.
- LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // A link to the file that contains logs of the CreateBatchPrediction operation.
- LogUri *string `type:"string"`
- // The ID of the MLModel that generated predictions for the BatchPrediction
- // request.
- MLModelId *string `min:"1" type:"string"`
- // A description of the most recent details about processing the batch prediction
- // request.
- Message *string `type:"string"`
- // A user-supplied name or description of the BatchPrediction.
- Name *string `type:"string"`
- // The location of an Amazon S3 bucket or directory to receive the operation
- // results.
- OutputUri *string `type:"string"`
- // The epoch time when Amazon Machine Learning marked the BatchPrediction as
- // INPROGRESS. StartedAt isn't available if the BatchPrediction is in the PENDING
- // state.
- StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The status of the BatchPrediction, which can be one of the following values:
- //
- // PENDING - Amazon Machine Learning (Amazon ML) submitted a request to generate
- // batch predictions. INPROGRESS - The batch predictions are in progress.
- // FAILED - The request to perform a batch prediction did not run to completion.
- // It is not usable. COMPLETED - The batch prediction process completed successfully.
- // DELETED - The BatchPrediction is marked as deleted. It is not usable.
- Status *string `type:"string" enum:"EntityStatus"`
- // The number of total records that Amazon Machine Learning saw while processing
- // the BatchPrediction.
- TotalRecordCount *int64 `type:"long"`
- }
- // String returns the string representation
- func (s GetBatchPredictionOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s GetBatchPredictionOutput) GoString() string {
- return s.String()
- }
- type GetDataSourceInput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the DataSource at creation.
- DataSourceId *string `min:"1" type:"string" required:"true"`
- // Specifies whether the GetDataSource operation should return DataSourceSchema.
- //
- // If true, DataSourceSchema is returned.
- //
- // If false, DataSourceSchema is not returned.
- Verbose *bool `type:"boolean"`
- }
- // String returns the string representation
- func (s GetDataSourceInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s GetDataSourceInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *GetDataSourceInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "GetDataSourceInput"}
- if s.DataSourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("DataSourceId"))
- }
- if s.DataSourceId != nil && len(*s.DataSourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("DataSourceId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a GetDataSource operation and describes a DataSource.
- type GetDataSourceOutput struct {
- _ struct{} `type:"structure"`
- // The parameter is true if statistics need to be generated from the observation
- // data.
- ComputeStatistics *bool `type:"boolean"`
- // The approximate CPU time in milliseconds that Amazon Machine Learning spent
- // processing the DataSource, normalized and scaled on computation resources.
- // ComputeTime is only available if the DataSource is in the COMPLETED state
- // and the ComputeStatistics is set to true.
- ComputeTime *int64 `type:"long"`
- // The time that the DataSource was created. The time is expressed in epoch
- // time.
- CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The AWS user account from which the DataSource was created. The account type
- // can be either an AWS root account or an AWS Identity and Access Management
- // (IAM) user account.
- CreatedByIamUser *string `type:"string"`
- // The location of the data file or directory in Amazon Simple Storage Service
- // (Amazon S3).
- DataLocationS3 *string `type:"string"`
- // A JSON string that represents the splitting and rearrangement requirement
- // used when this DataSource was created.
- DataRearrangement *string `type:"string"`
- // The total size of observations in the data files.
- DataSizeInBytes *int64 `type:"long"`
- // The ID assigned to the DataSource at creation. This value should be identical
- // to the value of the DataSourceId in the request.
- DataSourceId *string `min:"1" type:"string"`
- // The schema used by all of the data files of this DataSource.
- //
- // Note This parameter is provided as part of the verbose format.
- DataSourceSchema *string `type:"string"`
- // The epoch time when Amazon Machine Learning marked the DataSource as COMPLETED
- // or FAILED. FinishedAt is only available when the DataSource is in the COMPLETED
- // or FAILED state.
- FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The time of the most recent edit to the DataSource. The time is expressed
- // in epoch time.
- LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // A link to the file containing logs of CreateDataSourceFrom* operations.
- LogUri *string `type:"string"`
- // The user-supplied description of the most recent details about creating the
- // DataSource.
- Message *string `type:"string"`
- // A user-supplied name or description of the DataSource.
- Name *string `type:"string"`
- // The number of data files referenced by the DataSource.
- NumberOfFiles *int64 `type:"long"`
- // The datasource details that are specific to Amazon RDS.
- RDSMetadata *RDSMetadata `type:"structure"`
- // Describes the DataSource details specific to Amazon Redshift.
- RedshiftMetadata *RedshiftMetadata `type:"structure"`
- // The Amazon Resource Name (ARN) of an AWS IAM Role (http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html#roles-about-termsandconcepts),
- // such as the following: arn:aws:iam::account:role/rolename.
- RoleARN *string `min:"1" type:"string"`
- // The epoch time when Amazon Machine Learning marked the DataSource as INPROGRESS.
- // StartedAt isn't available if the DataSource is in the PENDING state.
- StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The current status of the DataSource. This element can have one of the following
- // values:
- //
- // PENDING - Amazon ML submitted a request to create a DataSource. INPROGRESS
- // - The creation process is underway. FAILED - The request to create a DataSource
- // did not run to completion. It is not usable. COMPLETED - The creation process
- // completed successfully. DELETED - The DataSource is marked as deleted. It
- // is not usable.
- Status *string `type:"string" enum:"EntityStatus"`
- }
- // String returns the string representation
- func (s GetDataSourceOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s GetDataSourceOutput) GoString() string {
- return s.String()
- }
- type GetEvaluationInput struct {
- _ struct{} `type:"structure"`
- // The ID of the Evaluation to retrieve. The evaluation of each MLModel is recorded
- // and cataloged. The ID provides the means to access the information.
- EvaluationId *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s GetEvaluationInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s GetEvaluationInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *GetEvaluationInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "GetEvaluationInput"}
- if s.EvaluationId == nil {
- invalidParams.Add(request.NewErrParamRequired("EvaluationId"))
- }
- if s.EvaluationId != nil && len(*s.EvaluationId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("EvaluationId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a GetEvaluation operation and describes an Evaluation.
- type GetEvaluationOutput struct {
- _ struct{} `type:"structure"`
- // The approximate CPU time in milliseconds that Amazon Machine Learning spent
- // processing the Evaluation, normalized and scaled on computation resources.
- // ComputeTime is only available if the Evaluation is in the COMPLETED state.
- ComputeTime *int64 `type:"long"`
- // The time that the Evaluation was created. The time is expressed in epoch
- // time.
- CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The AWS user account that invoked the evaluation. The account type can be
- // either an AWS root account or an AWS Identity and Access Management (IAM)
- // user account.
- CreatedByIamUser *string `type:"string"`
- // The DataSource used for this evaluation.
- EvaluationDataSourceId *string `min:"1" type:"string"`
- // The evaluation ID which is same as the EvaluationId in the request.
- EvaluationId *string `min:"1" type:"string"`
- // The epoch time when Amazon Machine Learning marked the Evaluation as COMPLETED
- // or FAILED. FinishedAt is only available when the Evaluation is in the COMPLETED
- // or FAILED state.
- FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The location of the data file or directory in Amazon Simple Storage Service
- // (Amazon S3).
- InputDataLocationS3 *string `type:"string"`
- // The time of the most recent edit to the Evaluation. The time is expressed
- // in epoch time.
- LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // A link to the file that contains logs of the CreateEvaluation operation.
- LogUri *string `type:"string"`
- // The ID of the MLModel that was the focus of the evaluation.
- MLModelId *string `min:"1" type:"string"`
- // A description of the most recent details about evaluating the MLModel.
- Message *string `type:"string"`
- // A user-supplied name or description of the Evaluation.
- Name *string `type:"string"`
- // Measurements of how well the MLModel performed using observations referenced
- // by the DataSource. One of the following metric is returned based on the type
- // of the MLModel:
- //
- // BinaryAUC: A binary MLModel uses the Area Under the Curve (AUC) technique
- // to measure performance.
- //
- // RegressionRMSE: A regression MLModel uses the Root Mean Square Error (RMSE)
- // technique to measure performance. RMSE measures the difference between predicted
- // and actual values for a single variable.
- //
- // MulticlassAvgFScore: A multiclass MLModel uses the F1 score technique
- // to measure performance.
- //
- // For more information about performance metrics, please see the Amazon
- // Machine Learning Developer Guide (http://docs.aws.amazon.com/machine-learning/latest/dg).
- PerformanceMetrics *PerformanceMetrics `type:"structure"`
- // The epoch time when Amazon Machine Learning marked the Evaluation as INPROGRESS.
- // StartedAt isn't available if the Evaluation is in the PENDING state.
- StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The status of the evaluation. This element can have one of the following
- // values:
- //
- // PENDING - Amazon Machine Language (Amazon ML) submitted a request to evaluate
- // an MLModel. INPROGRESS - The evaluation is underway. FAILED - The request
- // to evaluate an MLModel did not run to completion. It is not usable. COMPLETED
- // - The evaluation process completed successfully. DELETED - The Evaluation
- // is marked as deleted. It is not usable.
- Status *string `type:"string" enum:"EntityStatus"`
- }
- // String returns the string representation
- func (s GetEvaluationOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s GetEvaluationOutput) GoString() string {
- return s.String()
- }
- type GetMLModelInput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the MLModel at creation.
- MLModelId *string `min:"1" type:"string" required:"true"`
- // Specifies whether the GetMLModel operation should return Recipe.
- //
- // If true, Recipe is returned.
- //
- // If false, Recipe is not returned.
- Verbose *bool `type:"boolean"`
- }
- // String returns the string representation
- func (s GetMLModelInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s GetMLModelInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *GetMLModelInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "GetMLModelInput"}
- if s.MLModelId == nil {
- invalidParams.Add(request.NewErrParamRequired("MLModelId"))
- }
- if s.MLModelId != nil && len(*s.MLModelId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of a GetMLModel operation, and provides detailed information
- // about a MLModel.
- type GetMLModelOutput struct {
- _ struct{} `type:"structure"`
- // The approximate CPU time in milliseconds that Amazon Machine Learning spent
- // processing the MLModel, normalized and scaled on computation resources. ComputeTime
- // is only available if the MLModel is in the COMPLETED state.
- ComputeTime *int64 `type:"long"`
- // The time that the MLModel was created. The time is expressed in epoch time.
- CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The AWS user account from which the MLModel was created. The account type
- // can be either an AWS root account or an AWS Identity and Access Management
- // (IAM) user account.
- CreatedByIamUser *string `type:"string"`
- // The current endpoint of the MLModel
- EndpointInfo *RealtimeEndpointInfo `type:"structure"`
- // The epoch time when Amazon Machine Learning marked the MLModel as COMPLETED
- // or FAILED. FinishedAt is only available when the MLModel is in the COMPLETED
- // or FAILED state.
- FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The location of the data file or directory in Amazon Simple Storage Service
- // (Amazon S3).
- InputDataLocationS3 *string `type:"string"`
- // The time of the most recent edit to the MLModel. The time is expressed in
- // epoch time.
- LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // A link to the file that contains logs of the CreateMLModel operation.
- LogUri *string `type:"string"`
- // The MLModel ID, which is same as the MLModelId in the request.
- MLModelId *string `min:"1" type:"string"`
- // Identifies the MLModel category. The following are the available types:
- //
- // REGRESSION -- Produces a numeric result. For example, "What price should
- // a house be listed at?" BINARY -- Produces one of two possible results. For
- // example, "Is this an e-commerce website?" MULTICLASS -- Produces one of several
- // possible results. For example, "Is this a HIGH, LOW or MEDIUM risk trade?"
- MLModelType *string `type:"string" enum:"MLModelType"`
- // A description of the most recent details about accessing the MLModel.
- Message *string `type:"string"`
- // A user-supplied name or description of the MLModel.
- Name *string `type:"string"`
- // The recipe to use when training the MLModel. The Recipe provides detailed
- // information about the observation data to use during training, and manipulations
- // to perform on the observation data during training.
- //
- // Note This parameter is provided as part of the verbose format.
- Recipe *string `type:"string"`
- // The schema used by all of the data files referenced by the DataSource.
- //
- // Note This parameter is provided as part of the verbose format.
- Schema *string `type:"string"`
- // The scoring threshold is used in binary classification MLModel models. It
- // marks the boundary between a positive prediction and a negative prediction.
- //
- // Output values greater than or equal to the threshold receive a positive
- // result from the MLModel, such as true. Output values less than the threshold
- // receive a negative response from the MLModel, such as false.
- ScoreThreshold *float64 `type:"float"`
- // The time of the most recent edit to the ScoreThreshold. The time is expressed
- // in epoch time.
- ScoreThresholdLastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // Long integer type that is a 64-bit signed number.
- SizeInBytes *int64 `type:"long"`
- // The epoch time when Amazon Machine Learning marked the MLModel as INPROGRESS.
- // StartedAt isn't available if the MLModel is in the PENDING state.
- StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The current status of the MLModel. This element can have one of the following
- // values:
- //
- // PENDING - Amazon Machine Learning (Amazon ML) submitted a request to describe
- // a MLModel. INPROGRESS - The request is processing. FAILED - The request
- // did not run to completion. The ML model isn't usable. COMPLETED - The request
- // completed successfully. DELETED - The MLModel is marked as deleted. It isn't
- // usable.
- Status *string `type:"string" enum:"EntityStatus"`
- // The ID of the training DataSource.
- TrainingDataSourceId *string `min:"1" type:"string"`
- // A list of the training parameters in the MLModel. The list is implemented
- // as a map of key-value pairs.
- //
- // The following is the current set of training parameters:
- //
- // sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending
- // on the input data, the size of the model might affect its performance.
- //
- // The value is an integer that ranges from 100000 to 2147483648. The default
- // value is 33554432.
- //
- // sgd.maxPasses - The number of times that the training process traverses
- // the observations to build the MLModel. The value is an integer that ranges
- // from 1 to 10000. The default value is 10.
- //
- // sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling
- // data improves a model's ability to find the optimal solution for a variety
- // of data types. The valid values are auto and none. The default value is none.
- // We strongly recommend that you shuffle your data.
- //
- // sgd.l1RegularizationAmount - The coefficient regularization L1 norm. It
- // controls overfitting the data by penalizing large coefficients. This tends
- // to drive coefficients to zero, resulting in a sparse feature set. If you
- // use this parameter, start by specifying a small value, such as 1.0E-08.
- //
- // The value is a double that ranges from 0 to MAX_DOUBLE. The default is to
- // not use L1 normalization. This parameter can't be used when L2 is specified.
- // Use this parameter sparingly.
- //
- // sgd.l2RegularizationAmount - The coefficient regularization L2 norm. It
- // controls overfitting the data by penalizing large coefficients. This tends
- // to drive coefficients to small, nonzero values. If you use this parameter,
- // start by specifying a small value, such as 1.0E-08.
- //
- // The value is a double that ranges from 0 to MAX_DOUBLE. The default is to
- // not use L2 normalization. This parameter can't be used when L1 is specified.
- // Use this parameter sparingly.
- TrainingParameters map[string]*string `type:"map"`
- }
- // String returns the string representation
- func (s GetMLModelOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s GetMLModelOutput) GoString() string {
- return s.String()
- }
- // Represents the output of a GetMLModel operation.
- //
- // The content consists of the detailed metadata and the current status of
- // the MLModel.
- type MLModel struct {
- _ struct{} `type:"structure"`
- // The algorithm used to train the MLModel. The following algorithm is supported:
- //
- // SGD -- Stochastic gradient descent. The goal of SGD is to minimize the
- // gradient of the loss function.
- Algorithm *string `type:"string" enum:"Algorithm"`
- // Long integer type that is a 64-bit signed number.
- ComputeTime *int64 `type:"long"`
- // The time that the MLModel was created. The time is expressed in epoch time.
- CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The AWS user account from which the MLModel was created. The account type
- // can be either an AWS root account or an AWS Identity and Access Management
- // (IAM) user account.
- CreatedByIamUser *string `type:"string"`
- // The current endpoint of the MLModel.
- EndpointInfo *RealtimeEndpointInfo `type:"structure"`
- // A timestamp represented in epoch time.
- FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The location of the data file or directory in Amazon Simple Storage Service
- // (Amazon S3).
- InputDataLocationS3 *string `type:"string"`
- // The time of the most recent edit to the MLModel. The time is expressed in
- // epoch time.
- LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The ID assigned to the MLModel at creation.
- MLModelId *string `min:"1" type:"string"`
- // Identifies the MLModel category. The following are the available types:
- //
- // REGRESSION - Produces a numeric result. For example, "What price should
- // a house be listed at?" BINARY - Produces one of two possible results. For
- // example, "Is this a child-friendly web site?". MULTICLASS - Produces one
- // of several possible results. For example, "Is this a HIGH-, LOW-, or MEDIUM-risk
- // trade?".
- MLModelType *string `type:"string" enum:"MLModelType"`
- // A description of the most recent details about accessing the MLModel.
- Message *string `type:"string"`
- // A user-supplied name or description of the MLModel.
- Name *string `type:"string"`
- ScoreThreshold *float64 `type:"float"`
- // The time of the most recent edit to the ScoreThreshold. The time is expressed
- // in epoch time.
- ScoreThresholdLastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // Long integer type that is a 64-bit signed number.
- SizeInBytes *int64 `type:"long"`
- // A timestamp represented in epoch time.
- StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The current status of an MLModel. This element can have one of the following
- // values:
- //
- // PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create
- // an MLModel. INPROGRESS - The creation process is underway. FAILED - The
- // request to create an MLModel didn't run to completion. The model isn't usable.
- // COMPLETED - The creation process completed successfully. DELETED - The
- // MLModel is marked as deleted. It isn't usable.
- Status *string `type:"string" enum:"EntityStatus"`
- // The ID of the training DataSource. The CreateMLModel operation uses the TrainingDataSourceId.
- TrainingDataSourceId *string `min:"1" type:"string"`
- // A list of the training parameters in the MLModel. The list is implemented
- // as a map of key-value pairs.
- //
- // The following is the current set of training parameters:
- //
- // sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending
- // on the input data, the size of the model might affect its performance.
- //
- // The value is an integer that ranges from 100000 to 2147483648. The default
- // value is 33554432.
- //
- // sgd.maxPasses - The number of times that the training process traverses
- // the observations to build the MLModel. The value is an integer that ranges
- // from 1 to 10000. The default value is 10.
- //
- // sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling
- // the data improves a model's ability to find the optimal solution for a variety
- // of data types. The valid values are auto and none. The default value is none.
- //
- // sgd.l1RegularizationAmount - The coefficient regularization L1 norm, which
- // controls overfitting the data by penalizing large coefficients. This parameter
- // tends to drive coefficients to zero, resulting in sparse feature set. If
- // you use this parameter, start by specifying a small value, such as 1.0E-08.
- //
- // The value is a double that ranges from 0 to MAX_DOUBLE. The default is to
- // not use L1 normalization. This parameter can't be used when L2 is specified.
- // Use this parameter sparingly.
- //
- // sgd.l2RegularizationAmount - The coefficient regularization L2 norm, which
- // controls overfitting the data by penalizing large coefficients. This tends
- // to drive coefficients to small, nonzero values. If you use this parameter,
- // start by specifying a small value, such as 1.0E-08.
- //
- // The value is a double that ranges from 0 to MAX_DOUBLE. The default is to
- // not use L2 normalization. This parameter can't be used when L1 is specified.
- // Use this parameter sparingly.
- TrainingParameters map[string]*string `type:"map"`
- }
- // String returns the string representation
- func (s MLModel) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s MLModel) GoString() string {
- return s.String()
- }
- // Measurements of how well the MLModel performed on known observations. One
- // of the following metrics is returned, based on the type of the MLModel:
- //
- // BinaryAUC: The binary MLModel uses the Area Under the Curve (AUC) technique
- // to measure performance.
- //
- // RegressionRMSE: The regression MLModel uses the Root Mean Square Error
- // (RMSE) technique to measure performance. RMSE measures the difference between
- // predicted and actual values for a single variable.
- //
- // MulticlassAvgFScore: The multiclass MLModel uses the F1 score technique
- // to measure performance.
- //
- // For more information about performance metrics, please see the Amazon
- // Machine Learning Developer Guide (http://docs.aws.amazon.com/machine-learning/latest/dg).
- type PerformanceMetrics struct {
- _ struct{} `type:"structure"`
- Properties map[string]*string `type:"map"`
- }
- // String returns the string representation
- func (s PerformanceMetrics) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s PerformanceMetrics) GoString() string {
- return s.String()
- }
- type PredictInput struct {
- _ struct{} `type:"structure"`
- // A unique identifier of the MLModel.
- MLModelId *string `min:"1" type:"string" required:"true"`
- PredictEndpoint *string `type:"string" required:"true"`
- // A map of variable name-value pairs that represent an observation.
- Record map[string]*string `type:"map" required:"true"`
- }
- // String returns the string representation
- func (s PredictInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s PredictInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *PredictInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "PredictInput"}
- if s.MLModelId == nil {
- invalidParams.Add(request.NewErrParamRequired("MLModelId"))
- }
- if s.MLModelId != nil && len(*s.MLModelId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1))
- }
- if s.PredictEndpoint == nil {
- invalidParams.Add(request.NewErrParamRequired("PredictEndpoint"))
- }
- if s.Record == nil {
- invalidParams.Add(request.NewErrParamRequired("Record"))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- type PredictOutput struct {
- _ struct{} `type:"structure"`
- // The output from a Predict operation:
- //
- // Details - Contains the following attributes: DetailsAttributes.PREDICTIVE_MODEL_TYPE
- // - REGRESSION | BINARY | MULTICLASS DetailsAttributes.ALGORITHM - SGD
- //
- // PredictedLabel - Present for either a BINARY or MULTICLASS MLModel request.
- //
- // PredictedScores - Contains the raw classification score corresponding
- // to each label.
- //
- // PredictedValue - Present for a REGRESSION MLModel request.
- Prediction *Prediction `type:"structure"`
- }
- // String returns the string representation
- func (s PredictOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s PredictOutput) GoString() string {
- return s.String()
- }
- // The output from a Predict operation:
- //
- // Details - Contains the following attributes: DetailsAttributes.PREDICTIVE_MODEL_TYPE
- // - REGRESSION | BINARY | MULTICLASS DetailsAttributes.ALGORITHM - SGD
- //
- // PredictedLabel - Present for either a BINARY or MULTICLASS MLModel request.
- //
- // PredictedScores - Contains the raw classification score corresponding
- // to each label.
- //
- // PredictedValue - Present for a REGRESSION MLModel request.
- type Prediction struct {
- _ struct{} `type:"structure"`
- // Provides any additional details regarding the prediction.
- Details map[string]*string `locationName:"details" type:"map"`
- // The prediction label for either a BINARY or MULTICLASS MLModel.
- PredictedLabel *string `locationName:"predictedLabel" min:"1" type:"string"`
- // Provides the raw classification score corresponding to each label.
- PredictedScores map[string]*float64 `locationName:"predictedScores" type:"map"`
- // The prediction value for REGRESSION MLModel.
- PredictedValue *float64 `locationName:"predictedValue" type:"float"`
- }
- // String returns the string representation
- func (s Prediction) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s Prediction) GoString() string {
- return s.String()
- }
- // The data specification of an Amazon Relational Database Service (Amazon RDS)
- // DataSource.
- type RDSDataSpec struct {
- _ struct{} `type:"structure"`
- // A JSON string that represents the splitting and rearrangement processing
- // to be applied to a DataSource. If the DataRearrangement parameter is not
- // provided, all of the input data is used to create the Datasource.
- //
- // There are multiple parameters that control what data is used to create a
- // datasource:
- //
- // percentBegin
- //
- // Use percentBegin to indicate the beginning of the range of the data used
- // to create the Datasource. If you do not include percentBegin and percentEnd,
- // Amazon ML includes all of the data when creating the datasource.
- //
- // percentEnd
- //
- // Use percentEnd to indicate the end of the range of the data used to create
- // the Datasource. If you do not include percentBegin and percentEnd, Amazon
- // ML includes all of the data when creating the datasource.
- //
- // complement
- //
- // The complement parameter instructs Amazon ML to use the data that is not
- // included in the range of percentBegin to percentEnd to create a datasource.
- // The complement parameter is useful if you need to create complementary datasources
- // for training and evaluation. To create a complementary datasource, use the
- // same values for percentBegin and percentEnd, along with the complement parameter.
- //
- // For example, the following two datasources do not share any data, and can
- // be used to train and evaluate a model. The first datasource has 25 percent
- // of the data, and the second one has 75 percent of the data.
- //
- // Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}
- //
- // Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25,
- // "complement":"true"}}
- //
- // strategy
- //
- // To change how Amazon ML splits the data for a datasource, use the strategy
- // parameter.
- //
- // The default value for the strategy parameter is sequential, meaning that
- // Amazon ML takes all of the data records between the percentBegin and percentEnd
- // parameters for the datasource, in the order that the records appear in the
- // input data.
- //
- // The following two DataRearrangement lines are examples of sequentially ordered
- // training and evaluation datasources:
- //
- // Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"sequential"}}
- //
- // Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"sequential", "complement":"true"}}
- //
- // To randomly split the input data into the proportions indicated by the percentBegin
- // and percentEnd parameters, set the strategy parameter to random and provide
- // a string that is used as the seed value for the random data splitting (for
- // example, you can use the S3 path to your data as the random seed string).
- // If you choose the random split strategy, Amazon ML assigns each row of data
- // a pseudo-random number between 0 and 100, and then selects the rows that
- // have an assigned number between percentBegin and percentEnd. Pseudo-random
- // numbers are assigned using both the input seed string value and the byte
- // offset as a seed, so changing the data results in a different split. Any
- // existing ordering is preserved. The random splitting strategy ensures that
- // variables in the training and evaluation data are distributed similarly.
- // It is useful in the cases where the input data may have an implicit sort
- // order, which would otherwise result in training and evaluation datasources
- // containing non-similar data records.
- //
- // The following two DataRearrangement lines are examples of non-sequentially
- // ordered training and evaluation datasources:
- //
- // Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}
- //
- // Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}
- DataRearrangement *string `type:"string"`
- // A JSON string that represents the schema for an Amazon RDS DataSource. The
- // DataSchema defines the structure of the observation data in the data file(s)
- // referenced in the DataSource.
- //
- // A DataSchema is not required if you specify a DataSchemaUri
- //
- // Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames
- // have an array of key-value pairs for their value. Use the following format
- // to define your DataSchema.
- //
- // { "version": "1.0",
- //
- // "recordAnnotationFieldName": "F1",
- //
- // "recordWeightFieldName": "F2",
- //
- // "targetFieldName": "F3",
- //
- // "dataFormat": "CSV",
- //
- // "dataFileContainsHeader": true,
- //
- // "attributes": [
- //
- // { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType":
- // "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName":
- // "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL"
- // }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType":
- // "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE"
- // } ],
- //
- // "excludedVariableNames": [ "F6" ] }
- DataSchema *string `type:"string"`
- // The Amazon S3 location of the DataSchema.
- DataSchemaUri *string `type:"string"`
- // The AWS Identity and Access Management (IAM) credentials that are used connect
- // to the Amazon RDS database.
- DatabaseCredentials *RDSDatabaseCredentials `type:"structure" required:"true"`
- // Describes the DatabaseName and InstanceIdentifier of an Amazon RDS database.
- DatabaseInformation *RDSDatabase `type:"structure" required:"true"`
- // The role (DataPipelineDefaultResourceRole) assumed by an Amazon Elastic Compute
- // Cloud (Amazon EC2) instance to carry out the copy operation from Amazon RDS
- // to an Amazon S3 task. For more information, see Role templates (http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html)
- // for data pipelines.
- ResourceRole *string `min:"1" type:"string" required:"true"`
- // The Amazon S3 location for staging Amazon RDS data. The data retrieved from
- // Amazon RDS using SelectSqlQuery is stored in this location.
- S3StagingLocation *string `type:"string" required:"true"`
- // The security group IDs to be used to access a VPC-based RDS DB instance.
- // Ensure that there are appropriate ingress rules set up to allow access to
- // the RDS DB instance. This attribute is used by Data Pipeline to carry out
- // the copy operation from Amazon RDS to an Amazon S3 task.
- SecurityGroupIds []*string `type:"list" required:"true"`
- // The query that is used to retrieve the observation data for the DataSource.
- SelectSqlQuery *string `min:"1" type:"string" required:"true"`
- // The role (DataPipelineDefaultRole) assumed by AWS Data Pipeline service to
- // monitor the progress of the copy task from Amazon RDS to Amazon S3. For more
- // information, see Role templates (http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html)
- // for data pipelines.
- ServiceRole *string `min:"1" type:"string" required:"true"`
- // The subnet ID to be used to access a VPC-based RDS DB instance. This attribute
- // is used by Data Pipeline to carry out the copy task from Amazon RDS to Amazon
- // S3.
- SubnetId *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s RDSDataSpec) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s RDSDataSpec) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *RDSDataSpec) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "RDSDataSpec"}
- if s.DatabaseCredentials == nil {
- invalidParams.Add(request.NewErrParamRequired("DatabaseCredentials"))
- }
- if s.DatabaseInformation == nil {
- invalidParams.Add(request.NewErrParamRequired("DatabaseInformation"))
- }
- if s.ResourceRole == nil {
- invalidParams.Add(request.NewErrParamRequired("ResourceRole"))
- }
- if s.ResourceRole != nil && len(*s.ResourceRole) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("ResourceRole", 1))
- }
- if s.S3StagingLocation == nil {
- invalidParams.Add(request.NewErrParamRequired("S3StagingLocation"))
- }
- if s.SecurityGroupIds == nil {
- invalidParams.Add(request.NewErrParamRequired("SecurityGroupIds"))
- }
- if s.SelectSqlQuery == nil {
- invalidParams.Add(request.NewErrParamRequired("SelectSqlQuery"))
- }
- if s.SelectSqlQuery != nil && len(*s.SelectSqlQuery) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("SelectSqlQuery", 1))
- }
- if s.ServiceRole == nil {
- invalidParams.Add(request.NewErrParamRequired("ServiceRole"))
- }
- if s.ServiceRole != nil && len(*s.ServiceRole) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("ServiceRole", 1))
- }
- if s.SubnetId == nil {
- invalidParams.Add(request.NewErrParamRequired("SubnetId"))
- }
- if s.SubnetId != nil && len(*s.SubnetId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("SubnetId", 1))
- }
- if s.DatabaseCredentials != nil {
- if err := s.DatabaseCredentials.Validate(); err != nil {
- invalidParams.AddNested("DatabaseCredentials", err.(request.ErrInvalidParams))
- }
- }
- if s.DatabaseInformation != nil {
- if err := s.DatabaseInformation.Validate(); err != nil {
- invalidParams.AddNested("DatabaseInformation", err.(request.ErrInvalidParams))
- }
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // The database details of an Amazon RDS database.
- type RDSDatabase struct {
- _ struct{} `type:"structure"`
- // The name of a database hosted on an RDS DB instance.
- DatabaseName *string `min:"1" type:"string" required:"true"`
- // The ID of an RDS DB instance.
- InstanceIdentifier *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s RDSDatabase) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s RDSDatabase) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *RDSDatabase) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "RDSDatabase"}
- if s.DatabaseName == nil {
- invalidParams.Add(request.NewErrParamRequired("DatabaseName"))
- }
- if s.DatabaseName != nil && len(*s.DatabaseName) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("DatabaseName", 1))
- }
- if s.InstanceIdentifier == nil {
- invalidParams.Add(request.NewErrParamRequired("InstanceIdentifier"))
- }
- if s.InstanceIdentifier != nil && len(*s.InstanceIdentifier) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("InstanceIdentifier", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // The database credentials to connect to a database on an RDS DB instance.
- type RDSDatabaseCredentials struct {
- _ struct{} `type:"structure"`
- // The password to be used by Amazon ML to connect to a database on an RDS DB
- // instance. The password should have sufficient permissions to execute the
- // RDSSelectQuery query.
- Password *string `min:"8" type:"string" required:"true"`
- // The username to be used by Amazon ML to connect to database on an Amazon
- // RDS instance. The username should have sufficient permissions to execute
- // an RDSSelectSqlQuery query.
- Username *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s RDSDatabaseCredentials) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s RDSDatabaseCredentials) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *RDSDatabaseCredentials) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "RDSDatabaseCredentials"}
- if s.Password == nil {
- invalidParams.Add(request.NewErrParamRequired("Password"))
- }
- if s.Password != nil && len(*s.Password) < 8 {
- invalidParams.Add(request.NewErrParamMinLen("Password", 8))
- }
- if s.Username == nil {
- invalidParams.Add(request.NewErrParamRequired("Username"))
- }
- if s.Username != nil && len(*s.Username) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("Username", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // The datasource details that are specific to Amazon RDS.
- type RDSMetadata struct {
- _ struct{} `type:"structure"`
- // The ID of the Data Pipeline instance that is used to carry to copy data from
- // Amazon RDS to Amazon S3. You can use the ID to find details about the instance
- // in the Data Pipeline console.
- DataPipelineId *string `min:"1" type:"string"`
- // The database details required to connect to an Amazon RDS.
- Database *RDSDatabase `type:"structure"`
- // The username to be used by Amazon ML to connect to database on an Amazon
- // RDS instance. The username should have sufficient permissions to execute
- // an RDSSelectSqlQuery query.
- DatabaseUserName *string `min:"1" type:"string"`
- // The role (DataPipelineDefaultResourceRole) assumed by an Amazon EC2 instance
- // to carry out the copy task from Amazon RDS to Amazon S3. For more information,
- // see Role templates (http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html)
- // for data pipelines.
- ResourceRole *string `min:"1" type:"string"`
- // The SQL query that is supplied during CreateDataSourceFromRDS. Returns only
- // if Verbose is true in GetDataSourceInput.
- SelectSqlQuery *string `min:"1" type:"string"`
- // The role (DataPipelineDefaultRole) assumed by the Data Pipeline service to
- // monitor the progress of the copy task from Amazon RDS to Amazon S3. For more
- // information, see Role templates (http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html)
- // for data pipelines.
- ServiceRole *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s RDSMetadata) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s RDSMetadata) GoString() string {
- return s.String()
- }
- // Describes the real-time endpoint information for an MLModel.
- type RealtimeEndpointInfo struct {
- _ struct{} `type:"structure"`
- // The time that the request to create the real-time endpoint for the MLModel
- // was received. The time is expressed in epoch time.
- CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"`
- // The current status of the real-time endpoint for the MLModel. This element
- // can have one of the following values:
- //
- // NONE - Endpoint does not exist or was previously deleted. READY - Endpoint
- // is ready to be used for real-time predictions. UPDATING - Updating/creating
- // the endpoint.
- EndpointStatus *string `type:"string" enum:"RealtimeEndpointStatus"`
- // The URI that specifies where to send real-time prediction requests for the
- // MLModel.
- //
- // Note The application must wait until the real-time endpoint is ready before
- // using this URI.
- EndpointUrl *string `type:"string"`
- // The maximum processing rate for the real-time endpoint for MLModel, measured
- // in incoming requests per second.
- PeakRequestsPerSecond *int64 `type:"integer"`
- }
- // String returns the string representation
- func (s RealtimeEndpointInfo) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s RealtimeEndpointInfo) GoString() string {
- return s.String()
- }
- // Describes the data specification of an Amazon Redshift DataSource.
- type RedshiftDataSpec struct {
- _ struct{} `type:"structure"`
- // A JSON string that represents the splitting and rearrangement processing
- // to be applied to a DataSource. If the DataRearrangement parameter is not
- // provided, all of the input data is used to create the Datasource.
- //
- // There are multiple parameters that control what data is used to create a
- // datasource:
- //
- // percentBegin
- //
- // Use percentBegin to indicate the beginning of the range of the data used
- // to create the Datasource. If you do not include percentBegin and percentEnd,
- // Amazon ML includes all of the data when creating the datasource.
- //
- // percentEnd
- //
- // Use percentEnd to indicate the end of the range of the data used to create
- // the Datasource. If you do not include percentBegin and percentEnd, Amazon
- // ML includes all of the data when creating the datasource.
- //
- // complement
- //
- // The complement parameter instructs Amazon ML to use the data that is not
- // included in the range of percentBegin to percentEnd to create a datasource.
- // The complement parameter is useful if you need to create complementary datasources
- // for training and evaluation. To create a complementary datasource, use the
- // same values for percentBegin and percentEnd, along with the complement parameter.
- //
- // For example, the following two datasources do not share any data, and can
- // be used to train and evaluate a model. The first datasource has 25 percent
- // of the data, and the second one has 75 percent of the data.
- //
- // Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}
- //
- // Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25,
- // "complement":"true"}}
- //
- // strategy
- //
- // To change how Amazon ML splits the data for a datasource, use the strategy
- // parameter.
- //
- // The default value for the strategy parameter is sequential, meaning that
- // Amazon ML takes all of the data records between the percentBegin and percentEnd
- // parameters for the datasource, in the order that the records appear in the
- // input data.
- //
- // The following two DataRearrangement lines are examples of sequentially ordered
- // training and evaluation datasources:
- //
- // Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"sequential"}}
- //
- // Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"sequential", "complement":"true"}}
- //
- // To randomly split the input data into the proportions indicated by the percentBegin
- // and percentEnd parameters, set the strategy parameter to random and provide
- // a string that is used as the seed value for the random data splitting (for
- // example, you can use the S3 path to your data as the random seed string).
- // If you choose the random split strategy, Amazon ML assigns each row of data
- // a pseudo-random number between 0 and 100, and then selects the rows that
- // have an assigned number between percentBegin and percentEnd. Pseudo-random
- // numbers are assigned using both the input seed string value and the byte
- // offset as a seed, so changing the data results in a different split. Any
- // existing ordering is preserved. The random splitting strategy ensures that
- // variables in the training and evaluation data are distributed similarly.
- // It is useful in the cases where the input data may have an implicit sort
- // order, which would otherwise result in training and evaluation datasources
- // containing non-similar data records.
- //
- // The following two DataRearrangement lines are examples of non-sequentially
- // ordered training and evaluation datasources:
- //
- // Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}
- //
- // Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}
- DataRearrangement *string `type:"string"`
- // A JSON string that represents the schema for an Amazon Redshift DataSource.
- // The DataSchema defines the structure of the observation data in the data
- // file(s) referenced in the DataSource.
- //
- // A DataSchema is not required if you specify a DataSchemaUri.
- //
- // Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames
- // have an array of key-value pairs for their value. Use the following format
- // to define your DataSchema.
- //
- // { "version": "1.0",
- //
- // "recordAnnotationFieldName": "F1",
- //
- // "recordWeightFieldName": "F2",
- //
- // "targetFieldName": "F3",
- //
- // "dataFormat": "CSV",
- //
- // "dataFileContainsHeader": true,
- //
- // "attributes": [
- //
- // { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType":
- // "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName":
- // "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL"
- // }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType":
- // "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE"
- // } ],
- //
- // "excludedVariableNames": [ "F6" ] }
- DataSchema *string `type:"string"`
- // Describes the schema location for an Amazon Redshift DataSource.
- DataSchemaUri *string `type:"string"`
- // Describes AWS Identity and Access Management (IAM) credentials that are used
- // connect to the Amazon Redshift database.
- DatabaseCredentials *RedshiftDatabaseCredentials `type:"structure" required:"true"`
- // Describes the DatabaseName and ClusterIdentifier for an Amazon Redshift DataSource.
- DatabaseInformation *RedshiftDatabase `type:"structure" required:"true"`
- // Describes an Amazon S3 location to store the result set of the SelectSqlQuery
- // query.
- S3StagingLocation *string `type:"string" required:"true"`
- // Describes the SQL Query to execute on an Amazon Redshift database for an
- // Amazon Redshift DataSource.
- SelectSqlQuery *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s RedshiftDataSpec) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s RedshiftDataSpec) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *RedshiftDataSpec) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "RedshiftDataSpec"}
- if s.DatabaseCredentials == nil {
- invalidParams.Add(request.NewErrParamRequired("DatabaseCredentials"))
- }
- if s.DatabaseInformation == nil {
- invalidParams.Add(request.NewErrParamRequired("DatabaseInformation"))
- }
- if s.S3StagingLocation == nil {
- invalidParams.Add(request.NewErrParamRequired("S3StagingLocation"))
- }
- if s.SelectSqlQuery == nil {
- invalidParams.Add(request.NewErrParamRequired("SelectSqlQuery"))
- }
- if s.SelectSqlQuery != nil && len(*s.SelectSqlQuery) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("SelectSqlQuery", 1))
- }
- if s.DatabaseCredentials != nil {
- if err := s.DatabaseCredentials.Validate(); err != nil {
- invalidParams.AddNested("DatabaseCredentials", err.(request.ErrInvalidParams))
- }
- }
- if s.DatabaseInformation != nil {
- if err := s.DatabaseInformation.Validate(); err != nil {
- invalidParams.AddNested("DatabaseInformation", err.(request.ErrInvalidParams))
- }
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Describes the database details required to connect to an Amazon Redshift
- // database.
- type RedshiftDatabase struct {
- _ struct{} `type:"structure"`
- // The ID of an Amazon Redshift cluster.
- ClusterIdentifier *string `min:"1" type:"string" required:"true"`
- // The name of a database hosted on an Amazon Redshift cluster.
- DatabaseName *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s RedshiftDatabase) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s RedshiftDatabase) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *RedshiftDatabase) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "RedshiftDatabase"}
- if s.ClusterIdentifier == nil {
- invalidParams.Add(request.NewErrParamRequired("ClusterIdentifier"))
- }
- if s.ClusterIdentifier != nil && len(*s.ClusterIdentifier) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("ClusterIdentifier", 1))
- }
- if s.DatabaseName == nil {
- invalidParams.Add(request.NewErrParamRequired("DatabaseName"))
- }
- if s.DatabaseName != nil && len(*s.DatabaseName) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("DatabaseName", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Describes the database credentials for connecting to a database on an Amazon
- // Redshift cluster.
- type RedshiftDatabaseCredentials struct {
- _ struct{} `type:"structure"`
- // A password to be used by Amazon ML to connect to a database on an Amazon
- // Redshift cluster. The password should have sufficient permissions to execute
- // a RedshiftSelectSqlQuery query. The password should be valid for an Amazon
- // Redshift USER (http://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html).
- Password *string `min:"8" type:"string" required:"true"`
- // A username to be used by Amazon Machine Learning (Amazon ML)to connect to
- // a database on an Amazon Redshift cluster. The username should have sufficient
- // permissions to execute the RedshiftSelectSqlQuery query. The username should
- // be valid for an Amazon Redshift USER (http://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html).
- Username *string `min:"1" type:"string" required:"true"`
- }
- // String returns the string representation
- func (s RedshiftDatabaseCredentials) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s RedshiftDatabaseCredentials) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *RedshiftDatabaseCredentials) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "RedshiftDatabaseCredentials"}
- if s.Password == nil {
- invalidParams.Add(request.NewErrParamRequired("Password"))
- }
- if s.Password != nil && len(*s.Password) < 8 {
- invalidParams.Add(request.NewErrParamMinLen("Password", 8))
- }
- if s.Username == nil {
- invalidParams.Add(request.NewErrParamRequired("Username"))
- }
- if s.Username != nil && len(*s.Username) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("Username", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Describes the DataSource details specific to Amazon Redshift.
- type RedshiftMetadata struct {
- _ struct{} `type:"structure"`
- // A username to be used by Amazon Machine Learning (Amazon ML)to connect to
- // a database on an Amazon Redshift cluster. The username should have sufficient
- // permissions to execute the RedshiftSelectSqlQuery query. The username should
- // be valid for an Amazon Redshift USER (http://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html).
- DatabaseUserName *string `min:"1" type:"string"`
- // Describes the database details required to connect to an Amazon Redshift
- // database.
- RedshiftDatabase *RedshiftDatabase `type:"structure"`
- // The SQL query that is specified during CreateDataSourceFromRedshift. Returns
- // only if Verbose is true in GetDataSourceInput.
- SelectSqlQuery *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s RedshiftMetadata) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s RedshiftMetadata) GoString() string {
- return s.String()
- }
- // Describes the data specification of a DataSource.
- type S3DataSpec struct {
- _ struct{} `type:"structure"`
- // The location of the data file(s) used by a DataSource. The URI specifies
- // a data file or an Amazon Simple Storage Service (Amazon S3) directory or
- // bucket containing data files.
- DataLocationS3 *string `type:"string" required:"true"`
- // A JSON string that represents the splitting and rearrangement processing
- // to be applied to a DataSource. If the DataRearrangement parameter is not
- // provided, all of the input data is used to create the Datasource.
- //
- // There are multiple parameters that control what data is used to create a
- // datasource:
- //
- // percentBegin
- //
- // Use percentBegin to indicate the beginning of the range of the data used
- // to create the Datasource. If you do not include percentBegin and percentEnd,
- // Amazon ML includes all of the data when creating the datasource.
- //
- // percentEnd
- //
- // Use percentEnd to indicate the end of the range of the data used to create
- // the Datasource. If you do not include percentBegin and percentEnd, Amazon
- // ML includes all of the data when creating the datasource.
- //
- // complement
- //
- // The complement parameter instructs Amazon ML to use the data that is not
- // included in the range of percentBegin to percentEnd to create a datasource.
- // The complement parameter is useful if you need to create complementary datasources
- // for training and evaluation. To create a complementary datasource, use the
- // same values for percentBegin and percentEnd, along with the complement parameter.
- //
- // For example, the following two datasources do not share any data, and can
- // be used to train and evaluate a model. The first datasource has 25 percent
- // of the data, and the second one has 75 percent of the data.
- //
- // Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}
- //
- // Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25,
- // "complement":"true"}}
- //
- // strategy
- //
- // To change how Amazon ML splits the data for a datasource, use the strategy
- // parameter.
- //
- // The default value for the strategy parameter is sequential, meaning that
- // Amazon ML takes all of the data records between the percentBegin and percentEnd
- // parameters for the datasource, in the order that the records appear in the
- // input data.
- //
- // The following two DataRearrangement lines are examples of sequentially ordered
- // training and evaluation datasources:
- //
- // Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"sequential"}}
- //
- // Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"sequential", "complement":"true"}}
- //
- // To randomly split the input data into the proportions indicated by the percentBegin
- // and percentEnd parameters, set the strategy parameter to random and provide
- // a string that is used as the seed value for the random data splitting (for
- // example, you can use the S3 path to your data as the random seed string).
- // If you choose the random split strategy, Amazon ML assigns each row of data
- // a pseudo-random number between 0 and 100, and then selects the rows that
- // have an assigned number between percentBegin and percentEnd. Pseudo-random
- // numbers are assigned using both the input seed string value and the byte
- // offset as a seed, so changing the data results in a different split. Any
- // existing ordering is preserved. The random splitting strategy ensures that
- // variables in the training and evaluation data are distributed similarly.
- // It is useful in the cases where the input data may have an implicit sort
- // order, which would otherwise result in training and evaluation datasources
- // containing non-similar data records.
- //
- // The following two DataRearrangement lines are examples of non-sequentially
- // ordered training and evaluation datasources:
- //
- // Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}
- //
- // Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
- // "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}
- DataRearrangement *string `type:"string"`
- // A JSON string that represents the schema for an Amazon S3 DataSource. The
- // DataSchema defines the structure of the observation data in the data file(s)
- // referenced in the DataSource.
- //
- // You must provide either the DataSchema or the DataSchemaLocationS3.
- //
- // Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames
- // have an array of key-value pairs for their value. Use the following format
- // to define your DataSchema.
- //
- // { "version": "1.0",
- //
- // "recordAnnotationFieldName": "F1",
- //
- // "recordWeightFieldName": "F2",
- //
- // "targetFieldName": "F3",
- //
- // "dataFormat": "CSV",
- //
- // "dataFileContainsHeader": true,
- //
- // "attributes": [
- //
- // { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType":
- // "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName":
- // "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL"
- // }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType":
- // "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE"
- // } ],
- //
- // "excludedVariableNames": [ "F6" ] }
- DataSchema *string `type:"string"`
- // Describes the schema location in Amazon S3. You must provide either the DataSchema
- // or the DataSchemaLocationS3.
- DataSchemaLocationS3 *string `type:"string"`
- }
- // String returns the string representation
- func (s S3DataSpec) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s S3DataSpec) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *S3DataSpec) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "S3DataSpec"}
- if s.DataLocationS3 == nil {
- invalidParams.Add(request.NewErrParamRequired("DataLocationS3"))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // A custom key-value pair associated with an ML object, such as an ML model.
- type Tag struct {
- _ struct{} `type:"structure"`
- // A unique identifier for the tag. Valid characters include Unicode letters,
- // digits, white space, _, ., /, =, +, -, %, and @.
- Key *string `min:"1" type:"string"`
- // An optional string, typically used to describe or define the tag. Valid characters
- // include Unicode letters, digits, white space, _, ., /, =, +, -, %, and @.
- Value *string `type:"string"`
- }
- // String returns the string representation
- func (s Tag) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s Tag) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *Tag) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "Tag"}
- if s.Key != nil && len(*s.Key) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("Key", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- type UpdateBatchPredictionInput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the BatchPrediction during creation.
- BatchPredictionId *string `min:"1" type:"string" required:"true"`
- // A new user-supplied name or description of the BatchPrediction.
- BatchPredictionName *string `type:"string" required:"true"`
- }
- // String returns the string representation
- func (s UpdateBatchPredictionInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s UpdateBatchPredictionInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *UpdateBatchPredictionInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "UpdateBatchPredictionInput"}
- if s.BatchPredictionId == nil {
- invalidParams.Add(request.NewErrParamRequired("BatchPredictionId"))
- }
- if s.BatchPredictionId != nil && len(*s.BatchPredictionId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("BatchPredictionId", 1))
- }
- if s.BatchPredictionName == nil {
- invalidParams.Add(request.NewErrParamRequired("BatchPredictionName"))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of an UpdateBatchPrediction operation.
- //
- // You can see the updated content by using the GetBatchPrediction operation.
- type UpdateBatchPredictionOutput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the BatchPrediction during creation. This value should
- // be identical to the value of the BatchPredictionId in the request.
- BatchPredictionId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s UpdateBatchPredictionOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s UpdateBatchPredictionOutput) GoString() string {
- return s.String()
- }
- type UpdateDataSourceInput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the DataSource during creation.
- DataSourceId *string `min:"1" type:"string" required:"true"`
- // A new user-supplied name or description of the DataSource that will replace
- // the current description.
- DataSourceName *string `type:"string" required:"true"`
- }
- // String returns the string representation
- func (s UpdateDataSourceInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s UpdateDataSourceInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *UpdateDataSourceInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "UpdateDataSourceInput"}
- if s.DataSourceId == nil {
- invalidParams.Add(request.NewErrParamRequired("DataSourceId"))
- }
- if s.DataSourceId != nil && len(*s.DataSourceId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("DataSourceId", 1))
- }
- if s.DataSourceName == nil {
- invalidParams.Add(request.NewErrParamRequired("DataSourceName"))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of an UpdateDataSource operation.
- //
- // You can see the updated content by using the GetBatchPrediction operation.
- type UpdateDataSourceOutput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the DataSource during creation. This value should be identical
- // to the value of the DataSourceID in the request.
- DataSourceId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s UpdateDataSourceOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s UpdateDataSourceOutput) GoString() string {
- return s.String()
- }
- type UpdateEvaluationInput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the Evaluation during creation.
- EvaluationId *string `min:"1" type:"string" required:"true"`
- // A new user-supplied name or description of the Evaluation that will replace
- // the current content.
- EvaluationName *string `type:"string" required:"true"`
- }
- // String returns the string representation
- func (s UpdateEvaluationInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s UpdateEvaluationInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *UpdateEvaluationInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "UpdateEvaluationInput"}
- if s.EvaluationId == nil {
- invalidParams.Add(request.NewErrParamRequired("EvaluationId"))
- }
- if s.EvaluationId != nil && len(*s.EvaluationId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("EvaluationId", 1))
- }
- if s.EvaluationName == nil {
- invalidParams.Add(request.NewErrParamRequired("EvaluationName"))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of an UpdateEvaluation operation.
- //
- // You can see the updated content by using the GetEvaluation operation.
- type UpdateEvaluationOutput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the Evaluation during creation. This value should be identical
- // to the value of the Evaluation in the request.
- EvaluationId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s UpdateEvaluationOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s UpdateEvaluationOutput) GoString() string {
- return s.String()
- }
- type UpdateMLModelInput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the MLModel during creation.
- MLModelId *string `min:"1" type:"string" required:"true"`
- // A user-supplied name or description of the MLModel.
- MLModelName *string `type:"string"`
- // The ScoreThreshold used in binary classification MLModel that marks the boundary
- // between a positive prediction and a negative prediction.
- //
- // Output values greater than or equal to the ScoreThreshold receive a positive
- // result from the MLModel, such as true. Output values less than the ScoreThreshold
- // receive a negative response from the MLModel, such as false.
- ScoreThreshold *float64 `type:"float"`
- }
- // String returns the string representation
- func (s UpdateMLModelInput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s UpdateMLModelInput) GoString() string {
- return s.String()
- }
- // Validate inspects the fields of the type to determine if they are valid.
- func (s *UpdateMLModelInput) Validate() error {
- invalidParams := request.ErrInvalidParams{Context: "UpdateMLModelInput"}
- if s.MLModelId == nil {
- invalidParams.Add(request.NewErrParamRequired("MLModelId"))
- }
- if s.MLModelId != nil && len(*s.MLModelId) < 1 {
- invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1))
- }
- if invalidParams.Len() > 0 {
- return invalidParams
- }
- return nil
- }
- // Represents the output of an UpdateMLModel operation.
- //
- // You can see the updated content by using the GetMLModel operation.
- type UpdateMLModelOutput struct {
- _ struct{} `type:"structure"`
- // The ID assigned to the MLModel during creation. This value should be identical
- // to the value of the MLModelID in the request.
- MLModelId *string `min:"1" type:"string"`
- }
- // String returns the string representation
- func (s UpdateMLModelOutput) String() string {
- return awsutil.Prettify(s)
- }
- // GoString returns the string representation
- func (s UpdateMLModelOutput) GoString() string {
- return s.String()
- }
- // The function used to train an MLModel. Training choices supported by Amazon
- // ML include the following:
- //
- // SGD - Stochastic Gradient Descent. RandomForest - Random forest of decision
- // trees.
- const (
- // @enum Algorithm
- AlgorithmSgd = "sgd"
- )
- // A list of the variables to use in searching or filtering BatchPrediction.
- //
- // CreatedAt - Sets the search criteria to BatchPrediction creation date.
- // Status - Sets the search criteria to BatchPrediction status. Name - Sets
- // the search criteria to the contents of BatchPrediction Name. IAMUser -
- // Sets the search criteria to the user account that invoked the BatchPrediction
- // creation. MLModelId - Sets the search criteria to the MLModel used in the
- // BatchPrediction. DataSourceId - Sets the search criteria to the DataSource
- // used in the BatchPrediction. DataURI - Sets the search criteria to the data
- // file(s) used in the BatchPrediction. The URL can identify either a file or
- // an Amazon Simple Storage Service (Amazon S3) bucket or directory.
- const (
- // @enum BatchPredictionFilterVariable
- BatchPredictionFilterVariableCreatedAt = "CreatedAt"
- // @enum BatchPredictionFilterVariable
- BatchPredictionFilterVariableLastUpdatedAt = "LastUpdatedAt"
- // @enum BatchPredictionFilterVariable
- BatchPredictionFilterVariableStatus = "Status"
- // @enum BatchPredictionFilterVariable
- BatchPredictionFilterVariableName = "Name"
- // @enum BatchPredictionFilterVariable
- BatchPredictionFilterVariableIamuser = "IAMUser"
- // @enum BatchPredictionFilterVariable
- BatchPredictionFilterVariableMlmodelId = "MLModelId"
- // @enum BatchPredictionFilterVariable
- BatchPredictionFilterVariableDataSourceId = "DataSourceId"
- // @enum BatchPredictionFilterVariable
- BatchPredictionFilterVariableDataUri = "DataURI"
- )
- // A list of the variables to use in searching or filtering DataSource.
- //
- // CreatedAt - Sets the search criteria to DataSource creation date. Status
- // - Sets the search criteria to DataSource status. Name - Sets the search
- // criteria to the contents of DataSource Name. DataUri - Sets the search
- // criteria to the URI of data files used to create the DataSource. The URI
- // can identify either a file or an Amazon Simple Storage Service (Amazon S3)
- // bucket or directory. IAMUser - Sets the search criteria to the user account
- // that invoked the DataSource creation. Note The variable names should match
- // the variable names in the DataSource.
- const (
- // @enum DataSourceFilterVariable
- DataSourceFilterVariableCreatedAt = "CreatedAt"
- // @enum DataSourceFilterVariable
- DataSourceFilterVariableLastUpdatedAt = "LastUpdatedAt"
- // @enum DataSourceFilterVariable
- DataSourceFilterVariableStatus = "Status"
- // @enum DataSourceFilterVariable
- DataSourceFilterVariableName = "Name"
- // @enum DataSourceFilterVariable
- DataSourceFilterVariableDataLocationS3 = "DataLocationS3"
- // @enum DataSourceFilterVariable
- DataSourceFilterVariableIamuser = "IAMUser"
- )
- // Contains the key values of DetailsMap: PredictiveModelType - Indicates the
- // type of the MLModel. Algorithm - Indicates the algorithm that was used for
- // the MLModel.
- const (
- // @enum DetailsAttributes
- DetailsAttributesPredictiveModelType = "PredictiveModelType"
- // @enum DetailsAttributes
- DetailsAttributesAlgorithm = "Algorithm"
- )
- // Object status with the following possible values:
- //
- // PENDING INPROGRESS FAILED COMPLETED DELETED
- const (
- // @enum EntityStatus
- EntityStatusPending = "PENDING"
- // @enum EntityStatus
- EntityStatusInprogress = "INPROGRESS"
- // @enum EntityStatus
- EntityStatusFailed = "FAILED"
- // @enum EntityStatus
- EntityStatusCompleted = "COMPLETED"
- // @enum EntityStatus
- EntityStatusDeleted = "DELETED"
- )
- // A list of the variables to use in searching or filtering Evaluation.
- //
- // CreatedAt - Sets the search criteria to Evaluation creation date. Status
- // - Sets the search criteria to Evaluation status. Name - Sets the search
- // criteria to the contents of Evaluation Name. IAMUser - Sets the search
- // criteria to the user account that invoked an evaluation. MLModelId - Sets
- // the search criteria to the Predictor that was evaluated. DataSourceId -
- // Sets the search criteria to the DataSource used in evaluation. DataUri -
- // Sets the search criteria to the data file(s) used in evaluation. The URL
- // can identify either a file or an Amazon Simple Storage Service (Amazon S3)
- // bucket or directory.
- const (
- // @enum EvaluationFilterVariable
- EvaluationFilterVariableCreatedAt = "CreatedAt"
- // @enum EvaluationFilterVariable
- EvaluationFilterVariableLastUpdatedAt = "LastUpdatedAt"
- // @enum EvaluationFilterVariable
- EvaluationFilterVariableStatus = "Status"
- // @enum EvaluationFilterVariable
- EvaluationFilterVariableName = "Name"
- // @enum EvaluationFilterVariable
- EvaluationFilterVariableIamuser = "IAMUser"
- // @enum EvaluationFilterVariable
- EvaluationFilterVariableMlmodelId = "MLModelId"
- // @enum EvaluationFilterVariable
- EvaluationFilterVariableDataSourceId = "DataSourceId"
- // @enum EvaluationFilterVariable
- EvaluationFilterVariableDataUri = "DataURI"
- )
- const (
- // @enum MLModelFilterVariable
- MLModelFilterVariableCreatedAt = "CreatedAt"
- // @enum MLModelFilterVariable
- MLModelFilterVariableLastUpdatedAt = "LastUpdatedAt"
- // @enum MLModelFilterVariable
- MLModelFilterVariableStatus = "Status"
- // @enum MLModelFilterVariable
- MLModelFilterVariableName = "Name"
- // @enum MLModelFilterVariable
- MLModelFilterVariableIamuser = "IAMUser"
- // @enum MLModelFilterVariable
- MLModelFilterVariableTrainingDataSourceId = "TrainingDataSourceId"
- // @enum MLModelFilterVariable
- MLModelFilterVariableRealtimeEndpointStatus = "RealtimeEndpointStatus"
- // @enum MLModelFilterVariable
- MLModelFilterVariableMlmodelType = "MLModelType"
- // @enum MLModelFilterVariable
- MLModelFilterVariableAlgorithm = "Algorithm"
- // @enum MLModelFilterVariable
- MLModelFilterVariableTrainingDataUri = "TrainingDataURI"
- )
- const (
- // @enum MLModelType
- MLModelTypeRegression = "REGRESSION"
- // @enum MLModelType
- MLModelTypeBinary = "BINARY"
- // @enum MLModelType
- MLModelTypeMulticlass = "MULTICLASS"
- )
- const (
- // @enum RealtimeEndpointStatus
- RealtimeEndpointStatusNone = "NONE"
- // @enum RealtimeEndpointStatus
- RealtimeEndpointStatusReady = "READY"
- // @enum RealtimeEndpointStatus
- RealtimeEndpointStatusUpdating = "UPDATING"
- // @enum RealtimeEndpointStatus
- RealtimeEndpointStatusFailed = "FAILED"
- )
- // The sort order specified in a listing condition. Possible values include
- // the following:
- //
- // asc - Present the information in ascending order (from A-Z). dsc - Present
- // the information in descending order (from Z-A).
- const (
- // @enum SortOrder
- SortOrderAsc = "asc"
- // @enum SortOrder
- SortOrderDsc = "dsc"
- )
- const (
- // @enum TaggableResourceType
- TaggableResourceTypeBatchPrediction = "BatchPrediction"
- // @enum TaggableResourceType
- TaggableResourceTypeDataSource = "DataSource"
- // @enum TaggableResourceType
- TaggableResourceTypeEvaluation = "Evaluation"
- // @enum TaggableResourceType
- TaggableResourceTypeMlmodel = "MLModel"
- )
|