{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import json\n", "import requests\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "data = pd.read_excel('../data/precios_mexico_test.xlsx', index_col=\"FECHA_HORA\", names=['P'])\n", "data = data.to_json(orient='index', date_format='iso')" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "header = {'Content-Type': 'application/json', \\\n", " 'Accept': 'application/json'}" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "resp = requests.post(\"http://192.168.98.218/predict\", \\\n", " data = json.dumps(data),\\\n", " headers= header)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "500" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "resp.status_code" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "ename": "JSONDecodeError", "evalue": "Expecting value: line 1 column 1 (char 0)", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mJSONDecodeError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mpred\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mresp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mjson\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[1;32mC:\\anaconda3\\lib\\site-packages\\requests\\models.py\u001b[0m in \u001b[0;36mjson\u001b[1;34m(self, **kwargs)\u001b[0m\n\u001b[0;32m 895\u001b[0m \u001b[1;31m# used.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 896\u001b[0m \u001b[1;32mpass\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 897\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mcomplexjson\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mloads\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtext\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 898\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 899\u001b[0m \u001b[1;33m@\u001b[0m\u001b[0mproperty\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mC:\\anaconda3\\lib\\json\\__init__.py\u001b[0m in \u001b[0;36mloads\u001b[1;34m(s, encoding, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)\u001b[0m\n\u001b[0;32m 346\u001b[0m \u001b[0mparse_int\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m \u001b[1;32mand\u001b[0m \u001b[0mparse_float\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m \u001b[1;32mand\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 347\u001b[0m parse_constant is None and object_pairs_hook is None and not kw):\n\u001b[1;32m--> 348\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0m_default_decoder\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdecode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ms\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 349\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mcls\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 350\u001b[0m \u001b[0mcls\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mJSONDecoder\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mC:\\anaconda3\\lib\\json\\decoder.py\u001b[0m in \u001b[0;36mdecode\u001b[1;34m(self, s, _w)\u001b[0m\n\u001b[0;32m 335\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 336\u001b[0m \"\"\"\n\u001b[1;32m--> 337\u001b[1;33m \u001b[0mobj\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mend\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mraw_decode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ms\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0midx\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0m_w\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ms\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 338\u001b[0m \u001b[0mend\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_w\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ms\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mend\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 339\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mend\u001b[0m \u001b[1;33m!=\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ms\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mC:\\anaconda3\\lib\\json\\decoder.py\u001b[0m in \u001b[0;36mraw_decode\u001b[1;34m(self, s, idx)\u001b[0m\n\u001b[0;32m 353\u001b[0m \u001b[0mobj\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mend\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mscan_once\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ms\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0midx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 354\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mStopIteration\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 355\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mJSONDecodeError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Expecting value\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0ms\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0merr\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvalue\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 356\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mobj\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mend\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;31mJSONDecodeError\u001b[0m: Expecting value: line 1 column 1 (char 0)" ] } ], "source": [ "pred = resp.json()" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "pred = pd.read_json(pred['predictions'], orient='index')\n", "pred.plot()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.1" } }, "nbformat": 4, "nbformat_minor": 2 }