{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib notebook\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PPh-1Ph-2Ph-3Ph-24Ph-48Ph-168lunmmjvsabdom
Fecha_hora
2016-08-01 00:00:0055.4450NaNNaNNaNNaNNaNNaN1000
2016-08-01 01:00:0040.116955.4450NaNNaNNaNNaNNaN1000
2016-08-01 02:00:0034.064540.116955.4450NaNNaNNaNNaN1000
2016-08-01 03:00:0031.126134.064540.116955.4450NaNNaNNaN1000
2016-08-01 04:00:0029.724031.126134.064540.1169NaNNaNNaN1000
\n", "
" ], "text/plain": [ " P Ph-1 Ph-2 Ph-3 Ph-24 Ph-48 Ph-168 \\\n", "Fecha_hora \n", "2016-08-01 00:00:00 55.4450 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 01:00:00 40.1169 55.4450 NaN NaN NaN NaN NaN \n", "2016-08-01 02:00:00 34.0645 40.1169 55.4450 NaN NaN NaN NaN \n", "2016-08-01 03:00:00 31.1261 34.0645 40.1169 55.4450 NaN NaN NaN \n", "2016-08-01 04:00:00 29.7240 31.1261 34.0645 40.1169 NaN NaN NaN \n", "\n", " lun mmjv sab dom \n", "Fecha_hora \n", "2016-08-01 00:00:00 1 0 0 0 \n", "2016-08-01 01:00:00 1 0 0 0 \n", "2016-08-01 02:00:00 1 0 0 0 \n", "2016-08-01 03:00:00 1 0 0 0 \n", "2016-08-01 04:00:00 1 0 0 0 " ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "prices = pd.read_excel(\"lbrprices.xlsx\", index_col='Fecha_hora', columns='P')\n", "prices.head()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['P', 'Ph-1', 'Ph-2', 'Ph-3', 'Ph-24', 'Ph-48', 'Ph-168', 'lun', 'mmjv',\n", " 'sab', 'dom'],\n", " dtype='object')" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "prices.columns" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "prices = prices.P.to_frame()" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "pandas.core.frame.DataFrame" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(prices)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PP
Fecha_hora
2016-08-01 00:00:0055.4450NaN
2016-08-01 01:00:0040.1169NaN
2016-08-01 02:00:0034.0645NaN
2016-08-01 03:00:0031.1261NaN
2016-08-01 04:00:0029.7240NaN
2016-08-01 05:00:0032.3707NaN
2016-08-01 06:00:0035.1250NaN
2016-08-01 07:00:0038.6416NaN
2016-08-01 08:00:0048.4632NaN
2016-08-01 09:00:0049.4265NaN
2016-08-01 10:00:0045.0187NaN
2016-08-01 11:00:0045.5868NaN
2016-08-01 12:00:0047.5454NaN
2016-08-01 13:00:0047.6542NaN
2016-08-01 14:00:0046.3099NaN
2016-08-01 15:00:0048.1719NaN
2016-08-01 16:00:0047.4186NaN
2016-08-01 17:00:0045.7651NaN
2016-08-01 18:00:0048.9220NaN
2016-08-01 19:00:0050.3570NaN
2016-08-01 20:00:0045.0160NaN
2016-08-01 21:00:0050.7729NaN
2016-08-01 22:00:0048.3555NaN
2016-08-01 23:00:0049.8514NaN
2016-08-02 00:00:0042.208755.4450
2016-08-02 01:00:0038.871540.1169
2016-08-02 02:00:0035.539234.0645
2016-08-02 03:00:0038.838731.1261
2016-08-02 04:00:0033.062029.7240
2016-08-02 05:00:0035.247132.3707
.........
2018-12-10 18:00:00106.412869.6707
2018-12-10 19:00:00129.257873.3712
2018-12-10 20:00:00117.115069.1453
2018-12-10 21:00:00144.882070.0111
2018-12-10 22:00:00103.700066.9332
2018-12-10 23:00:0088.465559.1993
2018-12-11 00:00:0070.476251.8596
2018-12-11 01:00:0063.954347.1863
2018-12-11 02:00:0058.560046.0043
2018-12-11 03:00:0052.107045.0487
2018-12-11 04:00:0053.968645.3595
2018-12-11 05:00:0061.563948.9978
2018-12-11 06:00:0074.741067.7778
2018-12-11 07:00:0085.115980.6690
2018-12-11 08:00:0094.7120105.9934
2018-12-11 09:00:00100.5628110.8088
2018-12-11 10:00:0096.5661116.1816
2018-12-11 11:00:00106.0722122.7567
2018-12-11 12:00:00106.3128125.5741
2018-12-11 13:00:00105.6875112.8655
2018-12-11 14:00:00106.1539130.4650
2018-12-11 15:00:00102.3658136.3701
2018-12-11 16:00:00103.0934130.1201
2018-12-11 17:00:00101.9319110.6386
2018-12-11 18:00:00125.8868106.4128
2018-12-11 19:00:00101.8847129.2578
2018-12-11 20:00:00109.3477117.1150
2018-12-11 21:00:00109.5164144.8820
2018-12-11 22:00:00101.5718103.7000
2018-12-11 23:00:0075.213888.4655
\n", "

20712 rows × 2 columns

\n", "
" ], "text/plain": [ " P P\n", "Fecha_hora \n", "2016-08-01 00:00:00 55.4450 NaN\n", "2016-08-01 01:00:00 40.1169 NaN\n", "2016-08-01 02:00:00 34.0645 NaN\n", "2016-08-01 03:00:00 31.1261 NaN\n", "2016-08-01 04:00:00 29.7240 NaN\n", "2016-08-01 05:00:00 32.3707 NaN\n", "2016-08-01 06:00:00 35.1250 NaN\n", "2016-08-01 07:00:00 38.6416 NaN\n", "2016-08-01 08:00:00 48.4632 NaN\n", "2016-08-01 09:00:00 49.4265 NaN\n", "2016-08-01 10:00:00 45.0187 NaN\n", "2016-08-01 11:00:00 45.5868 NaN\n", "2016-08-01 12:00:00 47.5454 NaN\n", "2016-08-01 13:00:00 47.6542 NaN\n", "2016-08-01 14:00:00 46.3099 NaN\n", "2016-08-01 15:00:00 48.1719 NaN\n", "2016-08-01 16:00:00 47.4186 NaN\n", "2016-08-01 17:00:00 45.7651 NaN\n", "2016-08-01 18:00:00 48.9220 NaN\n", "2016-08-01 19:00:00 50.3570 NaN\n", "2016-08-01 20:00:00 45.0160 NaN\n", "2016-08-01 21:00:00 50.7729 NaN\n", "2016-08-01 22:00:00 48.3555 NaN\n", "2016-08-01 23:00:00 49.8514 NaN\n", "2016-08-02 00:00:00 42.2087 55.4450\n", "2016-08-02 01:00:00 38.8715 40.1169\n", "2016-08-02 02:00:00 35.5392 34.0645\n", "2016-08-02 03:00:00 38.8387 31.1261\n", "2016-08-02 04:00:00 33.0620 29.7240\n", "2016-08-02 05:00:00 35.2471 32.3707\n", "... ... ...\n", "2018-12-10 18:00:00 106.4128 69.6707\n", "2018-12-10 19:00:00 129.2578 73.3712\n", "2018-12-10 20:00:00 117.1150 69.1453\n", "2018-12-10 21:00:00 144.8820 70.0111\n", "2018-12-10 22:00:00 103.7000 66.9332\n", "2018-12-10 23:00:00 88.4655 59.1993\n", "2018-12-11 00:00:00 70.4762 51.8596\n", "2018-12-11 01:00:00 63.9543 47.1863\n", "2018-12-11 02:00:00 58.5600 46.0043\n", "2018-12-11 03:00:00 52.1070 45.0487\n", "2018-12-11 04:00:00 53.9686 45.3595\n", "2018-12-11 05:00:00 61.5639 48.9978\n", "2018-12-11 06:00:00 74.7410 67.7778\n", "2018-12-11 07:00:00 85.1159 80.6690\n", "2018-12-11 08:00:00 94.7120 105.9934\n", "2018-12-11 09:00:00 100.5628 110.8088\n", "2018-12-11 10:00:00 96.5661 116.1816\n", "2018-12-11 11:00:00 106.0722 122.7567\n", "2018-12-11 12:00:00 106.3128 125.5741\n", "2018-12-11 13:00:00 105.6875 112.8655\n", "2018-12-11 14:00:00 106.1539 130.4650\n", "2018-12-11 15:00:00 102.3658 136.3701\n", "2018-12-11 16:00:00 103.0934 130.1201\n", "2018-12-11 17:00:00 101.9319 110.6386\n", "2018-12-11 18:00:00 125.8868 106.4128\n", "2018-12-11 19:00:00 101.8847 129.2578\n", "2018-12-11 20:00:00 109.3477 117.1150\n", "2018-12-11 21:00:00 109.5164 144.8820\n", "2018-12-11 22:00:00 101.5718 103.7000\n", "2018-12-11 23:00:00 75.2138 88.4655\n", "\n", "[20712 rows x 2 columns]" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.concat([prices, prices['P'].shift(24)], axis=1)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PPh-24Ph-25Ph-26Ph-27Ph-28Ph-29Ph-30Ph-31Ph-32...Ph-183Ph-184Ph-185Ph-186Ph-187Ph-188Ph-189Ph-190Ph-191Ph-192
Fecha_hora
2016-08-01 00:00:0055.4450NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 01:00:0040.1169NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 02:00:0034.0645NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 03:00:0031.1261NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 04:00:0029.7240NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 05:00:0032.3707NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 06:00:0035.1250NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 07:00:0038.6416NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 08:00:0048.4632NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 09:00:0049.4265NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 10:00:0045.0187NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 11:00:0045.5868NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 12:00:0047.5454NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 13:00:0047.6542NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 14:00:0046.3099NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 15:00:0048.1719NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 16:00:0047.4186NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 17:00:0045.7651NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 18:00:0048.9220NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 19:00:0050.3570NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 20:00:0045.0160NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 21:00:0050.7729NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 22:00:0048.3555NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-01 23:00:0049.8514NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2016-08-02 00:00:0042.208755.445NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", "

25 rows × 75 columns

\n", "
" ], "text/plain": [ " P Ph-24 Ph-25 Ph-26 Ph-27 Ph-28 Ph-29 \\\n", "Fecha_hora \n", "2016-08-01 00:00:00 55.4450 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 01:00:00 40.1169 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 02:00:00 34.0645 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 03:00:00 31.1261 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 04:00:00 29.7240 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 05:00:00 32.3707 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 06:00:00 35.1250 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 07:00:00 38.6416 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 08:00:00 48.4632 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 09:00:00 49.4265 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 10:00:00 45.0187 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 11:00:00 45.5868 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 12:00:00 47.5454 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 13:00:00 47.6542 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 14:00:00 46.3099 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 15:00:00 48.1719 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 16:00:00 47.4186 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 17:00:00 45.7651 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 18:00:00 48.9220 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 19:00:00 50.3570 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 20:00:00 45.0160 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 21:00:00 50.7729 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 22:00:00 48.3555 NaN NaN NaN NaN NaN NaN \n", "2016-08-01 23:00:00 49.8514 NaN NaN NaN NaN NaN NaN \n", "2016-08-02 00:00:00 42.2087 55.445 NaN NaN NaN NaN NaN \n", "\n", " Ph-30 Ph-31 Ph-32 ... Ph-183 Ph-184 Ph-185 \\\n", "Fecha_hora ... \n", "2016-08-01 00:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 01:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 02:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 03:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 04:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 05:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 06:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 07:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 08:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 09:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 10:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 11:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 12:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 13:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 14:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 15:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 16:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 17:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 18:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 19:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 20:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 21:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 22:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-01 23:00:00 NaN NaN NaN ... NaN NaN NaN \n", "2016-08-02 00:00:00 NaN NaN NaN ... NaN NaN NaN \n", "\n", " Ph-186 Ph-187 Ph-188 Ph-189 Ph-190 Ph-191 Ph-192 \n", "Fecha_hora \n", "2016-08-01 00:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 01:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 02:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 03:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 04:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 05:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 06:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 07:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 08:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 09:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 10:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 11:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 12:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 13:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 14:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 15:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 16:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 17:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 18:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 19:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 20:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 21:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 22:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 23:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-02 00:00:00 NaN NaN NaN NaN NaN NaN NaN \n", "\n", "[25 rows x 75 columns]" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "prices_shifted = pd.concat([prices]+[prices['P'].shift(i) for i in range(24,73)]+[prices['P'].shift(i) for i in range(168,193)], axis=1)\n", "prices_shifted.columns = ['P']+['Ph-{}'.format(i) for i in range(24,73)] + ['Ph-{}'.format(i) for i in range(168,193)]\n", "prices_shifted.head(25)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true }, "outputs": [], "source": [ "prices_shifted['day_of_week'] = prices_shifted.index.weekday_name" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['P', 'Ph-24', 'Ph-25', 'Ph-26', 'Ph-27', 'Ph-28', 'Ph-29', 'Ph-30',\n", " 'Ph-31', 'Ph-32', 'Ph-33', 'Ph-34', 'Ph-35', 'Ph-36', 'Ph-37', 'Ph-38',\n", " 'Ph-39', 'Ph-40', 'Ph-41', 'Ph-42', 'Ph-43', 'Ph-44', 'Ph-45', 'Ph-46',\n", " 'Ph-47', 'Ph-48', 'Ph-49', 'Ph-50', 'Ph-51', 'Ph-52', 'Ph-53', 'Ph-54',\n", " 'Ph-55', 'Ph-56', 'Ph-57', 'Ph-58', 'Ph-59', 'Ph-60', 'Ph-61', 'Ph-62',\n", " 'Ph-63', 'Ph-64', 'Ph-65', 'Ph-66', 'Ph-67', 'Ph-68', 'Ph-69', 'Ph-70',\n", " 'Ph-71', 'Ph-72', 'Ph-168', 'Ph-169', 'Ph-170', 'Ph-171', 'Ph-172',\n", " 'Ph-173', 'Ph-174', 'Ph-175', 'Ph-176', 'Ph-177', 'Ph-178', 'Ph-179',\n", " 'Ph-180', 'Ph-181', 'Ph-182', 'Ph-183', 'Ph-184', 'Ph-185', 'Ph-186',\n", " 'Ph-187', 'Ph-188', 'Ph-189', 'Ph-190', 'Ph-191', 'Ph-192',\n", " 'day_of_week'],\n", " dtype='object')" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "prices_shifted.columns" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Int64Index([ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,\n", " ...\n", " 12, 12, 12, 12, 12, 12, 12, 12, 12, 12],\n", " dtype='int64', name='Fecha_hora', length=20712)" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "prices_shifted.index.month" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import calendar" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Aug'" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "calendar.month_abbr[8]" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PPh-24Ph-25Ph-26Ph-27Ph-28Ph-29Ph-30Ph-31Ph-32...Ph-185Ph-186Ph-187Ph-188Ph-189Ph-190Ph-191Ph-192day_of_weekmonth
Fecha_hora
2016-08-01 00:00:0055.4450NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNMondayAug
2016-08-01 01:00:0040.1169NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNMondayAug
2016-08-01 02:00:0034.0645NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNMondayAug
2016-08-01 03:00:0031.1261NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNMondayAug
2016-08-01 04:00:0029.7240NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNMondayAug
2016-08-01 05:00:0032.3707NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNMondayAug
2016-08-01 06:00:0035.1250NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNMondayAug
2016-08-01 07:00:0038.6416NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNMondayAug
2016-08-01 08:00:0048.4632NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNMondayAug
2016-08-01 09:00:0049.4265NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNMondayAug
\n", "

10 rows × 77 columns

\n", "
" ], "text/plain": [ " P Ph-24 Ph-25 Ph-26 Ph-27 Ph-28 Ph-29 Ph-30 \\\n", "Fecha_hora \n", "2016-08-01 00:00:00 55.4450 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 01:00:00 40.1169 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 02:00:00 34.0645 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 03:00:00 31.1261 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 04:00:00 29.7240 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 05:00:00 32.3707 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 06:00:00 35.1250 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 07:00:00 38.6416 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 08:00:00 48.4632 NaN NaN NaN NaN NaN NaN NaN \n", "2016-08-01 09:00:00 49.4265 NaN NaN NaN NaN NaN NaN NaN \n", "\n", " Ph-31 Ph-32 ... Ph-185 Ph-186 Ph-187 Ph-188 \\\n", "Fecha_hora ... \n", "2016-08-01 00:00:00 NaN NaN ... NaN NaN NaN NaN \n", "2016-08-01 01:00:00 NaN NaN ... NaN NaN NaN NaN \n", "2016-08-01 02:00:00 NaN NaN ... NaN NaN NaN NaN \n", "2016-08-01 03:00:00 NaN NaN ... NaN NaN NaN NaN \n", "2016-08-01 04:00:00 NaN NaN ... NaN NaN NaN NaN \n", "2016-08-01 05:00:00 NaN NaN ... NaN NaN NaN NaN \n", "2016-08-01 06:00:00 NaN NaN ... NaN NaN NaN NaN \n", "2016-08-01 07:00:00 NaN NaN ... NaN NaN NaN NaN \n", "2016-08-01 08:00:00 NaN NaN ... NaN NaN NaN NaN \n", "2016-08-01 09:00:00 NaN NaN ... NaN NaN NaN NaN \n", "\n", " Ph-189 Ph-190 Ph-191 Ph-192 day_of_week month \n", "Fecha_hora \n", "2016-08-01 00:00:00 NaN NaN NaN NaN Monday Aug \n", "2016-08-01 01:00:00 NaN NaN NaN NaN Monday Aug \n", "2016-08-01 02:00:00 NaN NaN NaN NaN Monday Aug \n", "2016-08-01 03:00:00 NaN NaN NaN NaN Monday Aug \n", "2016-08-01 04:00:00 NaN NaN NaN NaN Monday Aug \n", "2016-08-01 05:00:00 NaN NaN NaN NaN Monday Aug \n", "2016-08-01 06:00:00 NaN NaN NaN NaN Monday Aug \n", "2016-08-01 07:00:00 NaN NaN NaN NaN Monday Aug \n", "2016-08-01 08:00:00 NaN NaN NaN NaN Monday Aug \n", "2016-08-01 09:00:00 NaN NaN NaN NaN Monday Aug \n", "\n", "[10 rows x 77 columns]" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "prices_shifted['month'] = prices_shifted.index.month\n", "prices_shifted['month'] = prices_shifted['month'].apply(lambda x: calendar.month_abbr[x])\n", "prices_shifted.head(10)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PPh-24Ph-25Ph-26Ph-27Ph-28Ph-29Ph-30Ph-31Ph-32...month_Decmonth_Febmonth_Janmonth_Julmonth_Junmonth_Marmonth_Maymonth_Novmonth_Octmonth_Sep
Fecha_hora
2016-08-09 00:00:0095.326454.846145.198244.712346.299542.942244.355146.344045.682642.6676...0000000000
2016-08-09 01:00:0082.853252.217954.846145.198244.712346.299542.942244.355146.344045.6826...0000000000
2016-08-09 02:00:0057.976461.919852.217954.846145.198244.712346.299542.942244.355146.3440...0000000000
2016-08-09 03:00:0067.640736.810561.919852.217954.846145.198244.712346.299542.942244.3551...0000000000
2016-08-09 04:00:0066.489234.827436.810561.919852.217954.846145.198244.712346.299542.9422...0000000000
2016-08-09 05:00:0068.680734.582434.827436.810561.919852.217954.846145.198244.712346.2995...0000000000
2016-08-09 06:00:0066.925949.448134.582434.827436.810561.919852.217954.846145.198244.7123...0000000000
2016-08-09 07:00:0066.805755.672149.448134.582434.827436.810561.919852.217954.846145.1982...0000000000
2016-08-09 08:00:0085.245557.097455.672149.448134.582434.827436.810561.919852.217954.8461...0000000000
2016-08-09 09:00:0079.128367.036857.097455.672149.448134.582434.827436.810561.919852.2179...0000000000
2016-08-09 10:00:0079.496054.468167.036857.097455.672149.448134.582434.827436.810561.9198...0000000000
2016-08-09 11:00:0095.866654.445054.468167.036857.097455.672149.448134.582434.827436.8105...0000000000
2016-08-09 12:00:0080.838454.025054.445054.468167.036857.097455.672149.448134.582434.8274...0000000000
2016-08-09 13:00:0095.367256.339254.025054.445054.468167.036857.097455.672149.448134.5824...0000000000
2016-08-09 14:00:0085.483766.547356.339254.025054.445054.468167.036857.097455.672149.4481...0000000000
2016-08-09 15:00:0095.334058.873866.547356.339254.025054.445054.468167.036857.097455.6721...0000000000
2016-08-09 16:00:0093.613560.197358.873866.547356.339254.025054.445054.468167.036857.0974...0000000000
2016-08-09 17:00:0093.320459.747760.197358.873866.547356.339254.025054.445054.468167.0368...0000000000
2016-08-09 18:00:0078.543559.934559.747760.197358.873866.547356.339254.025054.445054.4681...0000000000
2016-08-09 19:00:0079.716356.915459.934559.747760.197358.873866.547356.339254.025054.4450...0000000000
2016-08-09 20:00:0098.430264.537856.915459.934559.747760.197358.873866.547356.339254.0250...0000000000
2016-08-09 21:00:0079.124558.552864.537856.915459.934559.747760.197358.873866.547356.3392...0000000000
2016-08-09 22:00:0079.000458.972358.552864.537856.915459.934559.747760.197358.873866.5473...0000000000
2016-08-09 23:00:0097.395568.242358.972358.552864.537856.915459.934559.747760.197358.8738...0000000000
2016-08-10 00:00:0051.731895.326468.242358.972358.552864.537856.915459.934559.747760.1973...0000000000
2016-08-10 01:00:0049.709882.853295.326468.242358.972358.552864.537856.915459.934559.7477...0000000000
2016-08-10 02:00:0046.757957.976482.853295.326468.242358.972358.552864.537856.915459.9345...0000000000
2016-08-10 03:00:0038.474267.640757.976482.853295.326468.242358.972358.552864.537856.9154...0000000000
2016-08-10 04:00:0039.784966.489267.640757.976482.853295.326468.242358.972358.552864.5378...0000000000
2016-08-10 05:00:0039.218768.680766.489267.640757.976482.853295.326468.242358.972358.5528...0000000000
..................................................................
2018-12-10 18:00:00106.412869.670767.034458.597558.943360.247761.771063.158359.973957.9043...1000000000
2018-12-10 19:00:00129.257873.371269.670767.034458.597558.943360.247761.771063.158359.9739...1000000000
2018-12-10 20:00:00117.115069.145373.371269.670767.034458.597558.943360.247761.771063.1583...1000000000
2018-12-10 21:00:00144.882070.011169.145373.371269.670767.034458.597558.943360.247761.7710...1000000000
2018-12-10 22:00:00103.700066.933270.011169.145373.371269.670767.034458.597558.943360.2477...1000000000
2018-12-10 23:00:0088.465559.199366.933270.011169.145373.371269.670767.034458.597558.9433...1000000000
2018-12-11 00:00:0070.476251.859659.199366.933270.011169.145373.371269.670767.034458.5975...1000000000
2018-12-11 01:00:0063.954347.186351.859659.199366.933270.011169.145373.371269.670767.0344...1000000000
2018-12-11 02:00:0058.560046.004347.186351.859659.199366.933270.011169.145373.371269.6707...1000000000
2018-12-11 03:00:0052.107045.048746.004347.186351.859659.199366.933270.011169.145373.3712...1000000000
2018-12-11 04:00:0053.968645.359545.048746.004347.186351.859659.199366.933270.011169.1453...1000000000
2018-12-11 05:00:0061.563948.997845.359545.048746.004347.186351.859659.199366.933270.0111...1000000000
2018-12-11 06:00:0074.741067.777848.997845.359545.048746.004347.186351.859659.199366.9332...1000000000
2018-12-11 07:00:0085.115980.669067.777848.997845.359545.048746.004347.186351.859659.1993...1000000000
2018-12-11 08:00:0094.7120105.993480.669067.777848.997845.359545.048746.004347.186351.8596...1000000000
2018-12-11 09:00:00100.5628110.8088105.993480.669067.777848.997845.359545.048746.004347.1863...1000000000
2018-12-11 10:00:0096.5661116.1816110.8088105.993480.669067.777848.997845.359545.048746.0043...1000000000
2018-12-11 11:00:00106.0722122.7567116.1816110.8088105.993480.669067.777848.997845.359545.0487...1000000000
2018-12-11 12:00:00106.3128125.5741122.7567116.1816110.8088105.993480.669067.777848.997845.3595...1000000000
2018-12-11 13:00:00105.6875112.8655125.5741122.7567116.1816110.8088105.993480.669067.777848.9978...1000000000
2018-12-11 14:00:00106.1539130.4650112.8655125.5741122.7567116.1816110.8088105.993480.669067.7778...1000000000
2018-12-11 15:00:00102.3658136.3701130.4650112.8655125.5741122.7567116.1816110.8088105.993480.6690...1000000000
2018-12-11 16:00:00103.0934130.1201136.3701130.4650112.8655125.5741122.7567116.1816110.8088105.9934...1000000000
2018-12-11 17:00:00101.9319110.6386130.1201136.3701130.4650112.8655125.5741122.7567116.1816110.8088...1000000000
2018-12-11 18:00:00125.8868106.4128110.6386130.1201136.3701130.4650112.8655125.5741122.7567116.1816...1000000000
2018-12-11 19:00:00101.8847129.2578106.4128110.6386130.1201136.3701130.4650112.8655125.5741122.7567...1000000000
2018-12-11 20:00:00109.3477117.1150129.2578106.4128110.6386130.1201136.3701130.4650112.8655125.5741...1000000000
2018-12-11 21:00:00109.5164144.8820117.1150129.2578106.4128110.6386130.1201136.3701130.4650112.8655...1000000000
2018-12-11 22:00:00101.5718103.7000144.8820117.1150129.2578106.4128110.6386130.1201136.3701130.4650...1000000000
2018-12-11 23:00:0075.213888.4655103.7000144.8820117.1150129.2578106.4128110.6386130.1201136.3701...1000000000
\n", "

20520 rows × 94 columns

\n", "
" ], "text/plain": [ " P Ph-24 Ph-25 Ph-26 Ph-27 \\\n", "Fecha_hora \n", "2016-08-09 00:00:00 95.3264 54.8461 45.1982 44.7123 46.2995 \n", "2016-08-09 01:00:00 82.8532 52.2179 54.8461 45.1982 44.7123 \n", "2016-08-09 02:00:00 57.9764 61.9198 52.2179 54.8461 45.1982 \n", "2016-08-09 03:00:00 67.6407 36.8105 61.9198 52.2179 54.8461 \n", "2016-08-09 04:00:00 66.4892 34.8274 36.8105 61.9198 52.2179 \n", "2016-08-09 05:00:00 68.6807 34.5824 34.8274 36.8105 61.9198 \n", "2016-08-09 06:00:00 66.9259 49.4481 34.5824 34.8274 36.8105 \n", "2016-08-09 07:00:00 66.8057 55.6721 49.4481 34.5824 34.8274 \n", "2016-08-09 08:00:00 85.2455 57.0974 55.6721 49.4481 34.5824 \n", "2016-08-09 09:00:00 79.1283 67.0368 57.0974 55.6721 49.4481 \n", "2016-08-09 10:00:00 79.4960 54.4681 67.0368 57.0974 55.6721 \n", "2016-08-09 11:00:00 95.8666 54.4450 54.4681 67.0368 57.0974 \n", "2016-08-09 12:00:00 80.8384 54.0250 54.4450 54.4681 67.0368 \n", "2016-08-09 13:00:00 95.3672 56.3392 54.0250 54.4450 54.4681 \n", "2016-08-09 14:00:00 85.4837 66.5473 56.3392 54.0250 54.4450 \n", "2016-08-09 15:00:00 95.3340 58.8738 66.5473 56.3392 54.0250 \n", "2016-08-09 16:00:00 93.6135 60.1973 58.8738 66.5473 56.3392 \n", "2016-08-09 17:00:00 93.3204 59.7477 60.1973 58.8738 66.5473 \n", "2016-08-09 18:00:00 78.5435 59.9345 59.7477 60.1973 58.8738 \n", "2016-08-09 19:00:00 79.7163 56.9154 59.9345 59.7477 60.1973 \n", "2016-08-09 20:00:00 98.4302 64.5378 56.9154 59.9345 59.7477 \n", "2016-08-09 21:00:00 79.1245 58.5528 64.5378 56.9154 59.9345 \n", "2016-08-09 22:00:00 79.0004 58.9723 58.5528 64.5378 56.9154 \n", "2016-08-09 23:00:00 97.3955 68.2423 58.9723 58.5528 64.5378 \n", "2016-08-10 00:00:00 51.7318 95.3264 68.2423 58.9723 58.5528 \n", "2016-08-10 01:00:00 49.7098 82.8532 95.3264 68.2423 58.9723 \n", "2016-08-10 02:00:00 46.7579 57.9764 82.8532 95.3264 68.2423 \n", "2016-08-10 03:00:00 38.4742 67.6407 57.9764 82.8532 95.3264 \n", "2016-08-10 04:00:00 39.7849 66.4892 67.6407 57.9764 82.8532 \n", "2016-08-10 05:00:00 39.2187 68.6807 66.4892 67.6407 57.9764 \n", "... ... ... ... ... ... \n", "2018-12-10 18:00:00 106.4128 69.6707 67.0344 58.5975 58.9433 \n", "2018-12-10 19:00:00 129.2578 73.3712 69.6707 67.0344 58.5975 \n", "2018-12-10 20:00:00 117.1150 69.1453 73.3712 69.6707 67.0344 \n", "2018-12-10 21:00:00 144.8820 70.0111 69.1453 73.3712 69.6707 \n", "2018-12-10 22:00:00 103.7000 66.9332 70.0111 69.1453 73.3712 \n", "2018-12-10 23:00:00 88.4655 59.1993 66.9332 70.0111 69.1453 \n", "2018-12-11 00:00:00 70.4762 51.8596 59.1993 66.9332 70.0111 \n", "2018-12-11 01:00:00 63.9543 47.1863 51.8596 59.1993 66.9332 \n", "2018-12-11 02:00:00 58.5600 46.0043 47.1863 51.8596 59.1993 \n", "2018-12-11 03:00:00 52.1070 45.0487 46.0043 47.1863 51.8596 \n", "2018-12-11 04:00:00 53.9686 45.3595 45.0487 46.0043 47.1863 \n", "2018-12-11 05:00:00 61.5639 48.9978 45.3595 45.0487 46.0043 \n", "2018-12-11 06:00:00 74.7410 67.7778 48.9978 45.3595 45.0487 \n", "2018-12-11 07:00:00 85.1159 80.6690 67.7778 48.9978 45.3595 \n", "2018-12-11 08:00:00 94.7120 105.9934 80.6690 67.7778 48.9978 \n", "2018-12-11 09:00:00 100.5628 110.8088 105.9934 80.6690 67.7778 \n", "2018-12-11 10:00:00 96.5661 116.1816 110.8088 105.9934 80.6690 \n", "2018-12-11 11:00:00 106.0722 122.7567 116.1816 110.8088 105.9934 \n", "2018-12-11 12:00:00 106.3128 125.5741 122.7567 116.1816 110.8088 \n", "2018-12-11 13:00:00 105.6875 112.8655 125.5741 122.7567 116.1816 \n", "2018-12-11 14:00:00 106.1539 130.4650 112.8655 125.5741 122.7567 \n", "2018-12-11 15:00:00 102.3658 136.3701 130.4650 112.8655 125.5741 \n", "2018-12-11 16:00:00 103.0934 130.1201 136.3701 130.4650 112.8655 \n", "2018-12-11 17:00:00 101.9319 110.6386 130.1201 136.3701 130.4650 \n", "2018-12-11 18:00:00 125.8868 106.4128 110.6386 130.1201 136.3701 \n", "2018-12-11 19:00:00 101.8847 129.2578 106.4128 110.6386 130.1201 \n", "2018-12-11 20:00:00 109.3477 117.1150 129.2578 106.4128 110.6386 \n", "2018-12-11 21:00:00 109.5164 144.8820 117.1150 129.2578 106.4128 \n", "2018-12-11 22:00:00 101.5718 103.7000 144.8820 117.1150 129.2578 \n", "2018-12-11 23:00:00 75.2138 88.4655 103.7000 144.8820 117.1150 \n", "\n", " Ph-28 Ph-29 Ph-30 Ph-31 Ph-32 \\\n", "Fecha_hora \n", "2016-08-09 00:00:00 42.9422 44.3551 46.3440 45.6826 42.6676 \n", "2016-08-09 01:00:00 46.2995 42.9422 44.3551 46.3440 45.6826 \n", "2016-08-09 02:00:00 44.7123 46.2995 42.9422 44.3551 46.3440 \n", "2016-08-09 03:00:00 45.1982 44.7123 46.2995 42.9422 44.3551 \n", "2016-08-09 04:00:00 54.8461 45.1982 44.7123 46.2995 42.9422 \n", "2016-08-09 05:00:00 52.2179 54.8461 45.1982 44.7123 46.2995 \n", "2016-08-09 06:00:00 61.9198 52.2179 54.8461 45.1982 44.7123 \n", "2016-08-09 07:00:00 36.8105 61.9198 52.2179 54.8461 45.1982 \n", "2016-08-09 08:00:00 34.8274 36.8105 61.9198 52.2179 54.8461 \n", "2016-08-09 09:00:00 34.5824 34.8274 36.8105 61.9198 52.2179 \n", "2016-08-09 10:00:00 49.4481 34.5824 34.8274 36.8105 61.9198 \n", "2016-08-09 11:00:00 55.6721 49.4481 34.5824 34.8274 36.8105 \n", "2016-08-09 12:00:00 57.0974 55.6721 49.4481 34.5824 34.8274 \n", "2016-08-09 13:00:00 67.0368 57.0974 55.6721 49.4481 34.5824 \n", "2016-08-09 14:00:00 54.4681 67.0368 57.0974 55.6721 49.4481 \n", "2016-08-09 15:00:00 54.4450 54.4681 67.0368 57.0974 55.6721 \n", "2016-08-09 16:00:00 54.0250 54.4450 54.4681 67.0368 57.0974 \n", "2016-08-09 17:00:00 56.3392 54.0250 54.4450 54.4681 67.0368 \n", "2016-08-09 18:00:00 66.5473 56.3392 54.0250 54.4450 54.4681 \n", "2016-08-09 19:00:00 58.8738 66.5473 56.3392 54.0250 54.4450 \n", "2016-08-09 20:00:00 60.1973 58.8738 66.5473 56.3392 54.0250 \n", "2016-08-09 21:00:00 59.7477 60.1973 58.8738 66.5473 56.3392 \n", "2016-08-09 22:00:00 59.9345 59.7477 60.1973 58.8738 66.5473 \n", "2016-08-09 23:00:00 56.9154 59.9345 59.7477 60.1973 58.8738 \n", "2016-08-10 00:00:00 64.5378 56.9154 59.9345 59.7477 60.1973 \n", "2016-08-10 01:00:00 58.5528 64.5378 56.9154 59.9345 59.7477 \n", "2016-08-10 02:00:00 58.9723 58.5528 64.5378 56.9154 59.9345 \n", "2016-08-10 03:00:00 68.2423 58.9723 58.5528 64.5378 56.9154 \n", "2016-08-10 04:00:00 95.3264 68.2423 58.9723 58.5528 64.5378 \n", "2016-08-10 05:00:00 82.8532 95.3264 68.2423 58.9723 58.5528 \n", "... ... ... ... ... ... \n", "2018-12-10 18:00:00 60.2477 61.7710 63.1583 59.9739 57.9043 \n", "2018-12-10 19:00:00 58.9433 60.2477 61.7710 63.1583 59.9739 \n", "2018-12-10 20:00:00 58.5975 58.9433 60.2477 61.7710 63.1583 \n", "2018-12-10 21:00:00 67.0344 58.5975 58.9433 60.2477 61.7710 \n", "2018-12-10 22:00:00 69.6707 67.0344 58.5975 58.9433 60.2477 \n", "2018-12-10 23:00:00 73.3712 69.6707 67.0344 58.5975 58.9433 \n", "2018-12-11 00:00:00 69.1453 73.3712 69.6707 67.0344 58.5975 \n", "2018-12-11 01:00:00 70.0111 69.1453 73.3712 69.6707 67.0344 \n", "2018-12-11 02:00:00 66.9332 70.0111 69.1453 73.3712 69.6707 \n", "2018-12-11 03:00:00 59.1993 66.9332 70.0111 69.1453 73.3712 \n", "2018-12-11 04:00:00 51.8596 59.1993 66.9332 70.0111 69.1453 \n", "2018-12-11 05:00:00 47.1863 51.8596 59.1993 66.9332 70.0111 \n", "2018-12-11 06:00:00 46.0043 47.1863 51.8596 59.1993 66.9332 \n", "2018-12-11 07:00:00 45.0487 46.0043 47.1863 51.8596 59.1993 \n", "2018-12-11 08:00:00 45.3595 45.0487 46.0043 47.1863 51.8596 \n", "2018-12-11 09:00:00 48.9978 45.3595 45.0487 46.0043 47.1863 \n", "2018-12-11 10:00:00 67.7778 48.9978 45.3595 45.0487 46.0043 \n", "2018-12-11 11:00:00 80.6690 67.7778 48.9978 45.3595 45.0487 \n", "2018-12-11 12:00:00 105.9934 80.6690 67.7778 48.9978 45.3595 \n", "2018-12-11 13:00:00 110.8088 105.9934 80.6690 67.7778 48.9978 \n", "2018-12-11 14:00:00 116.1816 110.8088 105.9934 80.6690 67.7778 \n", "2018-12-11 15:00:00 122.7567 116.1816 110.8088 105.9934 80.6690 \n", "2018-12-11 16:00:00 125.5741 122.7567 116.1816 110.8088 105.9934 \n", "2018-12-11 17:00:00 112.8655 125.5741 122.7567 116.1816 110.8088 \n", "2018-12-11 18:00:00 130.4650 112.8655 125.5741 122.7567 116.1816 \n", "2018-12-11 19:00:00 136.3701 130.4650 112.8655 125.5741 122.7567 \n", "2018-12-11 20:00:00 130.1201 136.3701 130.4650 112.8655 125.5741 \n", "2018-12-11 21:00:00 110.6386 130.1201 136.3701 130.4650 112.8655 \n", "2018-12-11 22:00:00 106.4128 110.6386 130.1201 136.3701 130.4650 \n", "2018-12-11 23:00:00 129.2578 106.4128 110.6386 130.1201 136.3701 \n", "\n", " ... month_Dec month_Feb month_Jan month_Jul \\\n", "Fecha_hora ... \n", "2016-08-09 00:00:00 ... 0 0 0 0 \n", "2016-08-09 01:00:00 ... 0 0 0 0 \n", "2016-08-09 02:00:00 ... 0 0 0 0 \n", "2016-08-09 03:00:00 ... 0 0 0 0 \n", "2016-08-09 04:00:00 ... 0 0 0 0 \n", "2016-08-09 05:00:00 ... 0 0 0 0 \n", "2016-08-09 06:00:00 ... 0 0 0 0 \n", "2016-08-09 07:00:00 ... 0 0 0 0 \n", "2016-08-09 08:00:00 ... 0 0 0 0 \n", "2016-08-09 09:00:00 ... 0 0 0 0 \n", "2016-08-09 10:00:00 ... 0 0 0 0 \n", "2016-08-09 11:00:00 ... 0 0 0 0 \n", "2016-08-09 12:00:00 ... 0 0 0 0 \n", "2016-08-09 13:00:00 ... 0 0 0 0 \n", "2016-08-09 14:00:00 ... 0 0 0 0 \n", "2016-08-09 15:00:00 ... 0 0 0 0 \n", "2016-08-09 16:00:00 ... 0 0 0 0 \n", "2016-08-09 17:00:00 ... 0 0 0 0 \n", "2016-08-09 18:00:00 ... 0 0 0 0 \n", "2016-08-09 19:00:00 ... 0 0 0 0 \n", "2016-08-09 20:00:00 ... 0 0 0 0 \n", "2016-08-09 21:00:00 ... 0 0 0 0 \n", "2016-08-09 22:00:00 ... 0 0 0 0 \n", "2016-08-09 23:00:00 ... 0 0 0 0 \n", "2016-08-10 00:00:00 ... 0 0 0 0 \n", "2016-08-10 01:00:00 ... 0 0 0 0 \n", "2016-08-10 02:00:00 ... 0 0 0 0 \n", "2016-08-10 03:00:00 ... 0 0 0 0 \n", "2016-08-10 04:00:00 ... 0 0 0 0 \n", "2016-08-10 05:00:00 ... 0 0 0 0 \n", "... ... ... ... ... ... \n", "2018-12-10 18:00:00 ... 1 0 0 0 \n", "2018-12-10 19:00:00 ... 1 0 0 0 \n", "2018-12-10 20:00:00 ... 1 0 0 0 \n", "2018-12-10 21:00:00 ... 1 0 0 0 \n", "2018-12-10 22:00:00 ... 1 0 0 0 \n", "2018-12-10 23:00:00 ... 1 0 0 0 \n", "2018-12-11 00:00:00 ... 1 0 0 0 \n", "2018-12-11 01:00:00 ... 1 0 0 0 \n", "2018-12-11 02:00:00 ... 1 0 0 0 \n", "2018-12-11 03:00:00 ... 1 0 0 0 \n", "2018-12-11 04:00:00 ... 1 0 0 0 \n", "2018-12-11 05:00:00 ... 1 0 0 0 \n", "2018-12-11 06:00:00 ... 1 0 0 0 \n", "2018-12-11 07:00:00 ... 1 0 0 0 \n", "2018-12-11 08:00:00 ... 1 0 0 0 \n", "2018-12-11 09:00:00 ... 1 0 0 0 \n", "2018-12-11 10:00:00 ... 1 0 0 0 \n", "2018-12-11 11:00:00 ... 1 0 0 0 \n", "2018-12-11 12:00:00 ... 1 0 0 0 \n", "2018-12-11 13:00:00 ... 1 0 0 0 \n", "2018-12-11 14:00:00 ... 1 0 0 0 \n", "2018-12-11 15:00:00 ... 1 0 0 0 \n", "2018-12-11 16:00:00 ... 1 0 0 0 \n", "2018-12-11 17:00:00 ... 1 0 0 0 \n", "2018-12-11 18:00:00 ... 1 0 0 0 \n", "2018-12-11 19:00:00 ... 1 0 0 0 \n", "2018-12-11 20:00:00 ... 1 0 0 0 \n", "2018-12-11 21:00:00 ... 1 0 0 0 \n", "2018-12-11 22:00:00 ... 1 0 0 0 \n", "2018-12-11 23:00:00 ... 1 0 0 0 \n", "\n", " month_Jun month_Mar month_May month_Nov month_Oct \\\n", "Fecha_hora \n", "2016-08-09 00:00:00 0 0 0 0 0 \n", "2016-08-09 01:00:00 0 0 0 0 0 \n", "2016-08-09 02:00:00 0 0 0 0 0 \n", "2016-08-09 03:00:00 0 0 0 0 0 \n", "2016-08-09 04:00:00 0 0 0 0 0 \n", "2016-08-09 05:00:00 0 0 0 0 0 \n", "2016-08-09 06:00:00 0 0 0 0 0 \n", "2016-08-09 07:00:00 0 0 0 0 0 \n", "2016-08-09 08:00:00 0 0 0 0 0 \n", "2016-08-09 09:00:00 0 0 0 0 0 \n", "2016-08-09 10:00:00 0 0 0 0 0 \n", "2016-08-09 11:00:00 0 0 0 0 0 \n", "2016-08-09 12:00:00 0 0 0 0 0 \n", "2016-08-09 13:00:00 0 0 0 0 0 \n", "2016-08-09 14:00:00 0 0 0 0 0 \n", "2016-08-09 15:00:00 0 0 0 0 0 \n", "2016-08-09 16:00:00 0 0 0 0 0 \n", "2016-08-09 17:00:00 0 0 0 0 0 \n", "2016-08-09 18:00:00 0 0 0 0 0 \n", "2016-08-09 19:00:00 0 0 0 0 0 \n", "2016-08-09 20:00:00 0 0 0 0 0 \n", "2016-08-09 21:00:00 0 0 0 0 0 \n", "2016-08-09 22:00:00 0 0 0 0 0 \n", "2016-08-09 23:00:00 0 0 0 0 0 \n", "2016-08-10 00:00:00 0 0 0 0 0 \n", "2016-08-10 01:00:00 0 0 0 0 0 \n", "2016-08-10 02:00:00 0 0 0 0 0 \n", "2016-08-10 03:00:00 0 0 0 0 0 \n", "2016-08-10 04:00:00 0 0 0 0 0 \n", "2016-08-10 05:00:00 0 0 0 0 0 \n", "... ... ... ... ... ... \n", "2018-12-10 18:00:00 0 0 0 0 0 \n", "2018-12-10 19:00:00 0 0 0 0 0 \n", "2018-12-10 20:00:00 0 0 0 0 0 \n", "2018-12-10 21:00:00 0 0 0 0 0 \n", "2018-12-10 22:00:00 0 0 0 0 0 \n", "2018-12-10 23:00:00 0 0 0 0 0 \n", "2018-12-11 00:00:00 0 0 0 0 0 \n", "2018-12-11 01:00:00 0 0 0 0 0 \n", "2018-12-11 02:00:00 0 0 0 0 0 \n", "2018-12-11 03:00:00 0 0 0 0 0 \n", "2018-12-11 04:00:00 0 0 0 0 0 \n", "2018-12-11 05:00:00 0 0 0 0 0 \n", "2018-12-11 06:00:00 0 0 0 0 0 \n", "2018-12-11 07:00:00 0 0 0 0 0 \n", "2018-12-11 08:00:00 0 0 0 0 0 \n", "2018-12-11 09:00:00 0 0 0 0 0 \n", "2018-12-11 10:00:00 0 0 0 0 0 \n", "2018-12-11 11:00:00 0 0 0 0 0 \n", "2018-12-11 12:00:00 0 0 0 0 0 \n", "2018-12-11 13:00:00 0 0 0 0 0 \n", "2018-12-11 14:00:00 0 0 0 0 0 \n", "2018-12-11 15:00:00 0 0 0 0 0 \n", "2018-12-11 16:00:00 0 0 0 0 0 \n", "2018-12-11 17:00:00 0 0 0 0 0 \n", "2018-12-11 18:00:00 0 0 0 0 0 \n", "2018-12-11 19:00:00 0 0 0 0 0 \n", "2018-12-11 20:00:00 0 0 0 0 0 \n", "2018-12-11 21:00:00 0 0 0 0 0 \n", "2018-12-11 22:00:00 0 0 0 0 0 \n", "2018-12-11 23:00:00 0 0 0 0 0 \n", "\n", " month_Sep \n", "Fecha_hora \n", "2016-08-09 00:00:00 0 \n", "2016-08-09 01:00:00 0 \n", "2016-08-09 02:00:00 0 \n", "2016-08-09 03:00:00 0 \n", "2016-08-09 04:00:00 0 \n", "2016-08-09 05:00:00 0 \n", "2016-08-09 06:00:00 0 \n", "2016-08-09 07:00:00 0 \n", "2016-08-09 08:00:00 0 \n", "2016-08-09 09:00:00 0 \n", "2016-08-09 10:00:00 0 \n", "2016-08-09 11:00:00 0 \n", "2016-08-09 12:00:00 0 \n", "2016-08-09 13:00:00 0 \n", "2016-08-09 14:00:00 0 \n", "2016-08-09 15:00:00 0 \n", "2016-08-09 16:00:00 0 \n", "2016-08-09 17:00:00 0 \n", "2016-08-09 18:00:00 0 \n", "2016-08-09 19:00:00 0 \n", "2016-08-09 20:00:00 0 \n", "2016-08-09 21:00:00 0 \n", "2016-08-09 22:00:00 0 \n", "2016-08-09 23:00:00 0 \n", "2016-08-10 00:00:00 0 \n", "2016-08-10 01:00:00 0 \n", "2016-08-10 02:00:00 0 \n", "2016-08-10 03:00:00 0 \n", "2016-08-10 04:00:00 0 \n", "2016-08-10 05:00:00 0 \n", "... ... \n", "2018-12-10 18:00:00 0 \n", "2018-12-10 19:00:00 0 \n", "2018-12-10 20:00:00 0 \n", "2018-12-10 21:00:00 0 \n", "2018-12-10 22:00:00 0 \n", "2018-12-10 23:00:00 0 \n", "2018-12-11 00:00:00 0 \n", "2018-12-11 01:00:00 0 \n", "2018-12-11 02:00:00 0 \n", "2018-12-11 03:00:00 0 \n", "2018-12-11 04:00:00 0 \n", "2018-12-11 05:00:00 0 \n", "2018-12-11 06:00:00 0 \n", "2018-12-11 07:00:00 0 \n", "2018-12-11 08:00:00 0 \n", "2018-12-11 09:00:00 0 \n", "2018-12-11 10:00:00 0 \n", "2018-12-11 11:00:00 0 \n", "2018-12-11 12:00:00 0 \n", "2018-12-11 13:00:00 0 \n", "2018-12-11 14:00:00 0 \n", "2018-12-11 15:00:00 0 \n", "2018-12-11 16:00:00 0 \n", "2018-12-11 17:00:00 0 \n", "2018-12-11 18:00:00 0 \n", "2018-12-11 19:00:00 0 \n", "2018-12-11 20:00:00 0 \n", "2018-12-11 21:00:00 0 \n", "2018-12-11 22:00:00 0 \n", "2018-12-11 23:00:00 0 \n", "\n", "[20520 rows x 94 columns]" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "prices = pd.get_dummies(prices_shifted)\n", "prices.dropna()" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PPh-24Ph-25Ph-26Ph-27Ph-28Ph-29Ph-30Ph-31Ph-32...month_Decmonth_Febmonth_Janmonth_Julmonth_Junmonth_Marmonth_Maymonth_Novmonth_Octmonth_Sep
count20712.00000020688.00000020687.00000020686.00000020685.00000020684.00000020683.00000020682.00000020681.00000020680.000000...20712.00000020712.00000020712.00000020712.00000020712.00000020712.00000020712.00000020712.00000020712.00000020712.000000
mean71.83407871.81264871.81184371.81030271.80676971.80457871.80180171.80012771.79824971.795429...0.0845890.0648900.0718420.0718420.0695250.0718420.0718420.1042870.1077640.104287
std34.13794334.14481934.14544834.14555434.14259934.14197034.14045834.14043534.14019334.138609...0.2782750.2463370.2582330.2582330.2543510.2582330.2582330.3056400.3100890.305640
min18.70490018.70490018.70490018.70490018.70490018.70490018.70490018.70490018.70490018.704900...0.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000
25%47.85337547.84097547.83775047.83452547.83130047.83122547.83115047.83107547.83100047.826850...0.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000
50%64.74220064.70235064.70080064.70075064.70070064.69815064.69560064.69475064.69390064.688300...0.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000
75%88.36625088.33050088.32065088.31212588.30500088.29712588.29200088.28807588.28380088.278400...0.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000
max329.440000329.440000329.440000329.440000329.440000329.440000329.440000329.440000329.440000329.440000...1.0000001.0000001.0000001.0000001.0000001.0000001.0000001.0000001.0000001.000000
\n", "

8 rows × 94 columns

\n", "
" ], "text/plain": [ " P Ph-24 Ph-25 Ph-26 Ph-27 \\\n", "count 20712.000000 20688.000000 20687.000000 20686.000000 20685.000000 \n", "mean 71.834078 71.812648 71.811843 71.810302 71.806769 \n", "std 34.137943 34.144819 34.145448 34.145554 34.142599 \n", "min 18.704900 18.704900 18.704900 18.704900 18.704900 \n", "25% 47.853375 47.840975 47.837750 47.834525 47.831300 \n", "50% 64.742200 64.702350 64.700800 64.700750 64.700700 \n", "75% 88.366250 88.330500 88.320650 88.312125 88.305000 \n", "max 329.440000 329.440000 329.440000 329.440000 329.440000 \n", "\n", " Ph-28 Ph-29 Ph-30 Ph-31 Ph-32 \\\n", "count 20684.000000 20683.000000 20682.000000 20681.000000 20680.000000 \n", "mean 71.804578 71.801801 71.800127 71.798249 71.795429 \n", "std 34.141970 34.140458 34.140435 34.140193 34.138609 \n", "min 18.704900 18.704900 18.704900 18.704900 18.704900 \n", "25% 47.831225 47.831150 47.831075 47.831000 47.826850 \n", "50% 64.698150 64.695600 64.694750 64.693900 64.688300 \n", "75% 88.297125 88.292000 88.288075 88.283800 88.278400 \n", "max 329.440000 329.440000 329.440000 329.440000 329.440000 \n", "\n", " ... month_Dec month_Feb month_Jan month_Jul \\\n", "count ... 20712.000000 20712.000000 20712.000000 20712.000000 \n", "mean ... 0.084589 0.064890 0.071842 0.071842 \n", "std ... 0.278275 0.246337 0.258233 0.258233 \n", "min ... 0.000000 0.000000 0.000000 0.000000 \n", "25% ... 0.000000 0.000000 0.000000 0.000000 \n", "50% ... 0.000000 0.000000 0.000000 0.000000 \n", "75% ... 0.000000 0.000000 0.000000 0.000000 \n", "max ... 1.000000 1.000000 1.000000 1.000000 \n", "\n", " month_Jun month_Mar month_May month_Nov month_Oct \\\n", "count 20712.000000 20712.000000 20712.000000 20712.000000 20712.000000 \n", "mean 0.069525 0.071842 0.071842 0.104287 0.107764 \n", "std 0.254351 0.258233 0.258233 0.305640 0.310089 \n", "min 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "25% 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "50% 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "75% 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "max 1.000000 1.000000 1.000000 1.000000 1.000000 \n", "\n", " month_Sep \n", "count 20712.000000 \n", "mean 0.104287 \n", "std 0.305640 \n", "min 0.000000 \n", "25% 0.000000 \n", "50% 0.000000 \n", "75% 0.000000 \n", "max 1.000000 \n", "\n", "[8 rows x 94 columns]" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "prices.describe()" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": true }, "outputs": [], "source": [ "prices.to_csv(\"lbrprices_transformed_v2.csv\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 }