{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib notebook\n", "import pandas as pd\n", "import numpy as np\n", "import pickle\n", "import calendar" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
P
FECHA_HORA
2018-01-11 00:00:0038.878
2018-01-11 01:00:0033.544
2018-01-11 02:00:0032.477
2018-01-11 03:00:0032.498
2018-01-11 04:00:0032.659
\n", "
" ], "text/plain": [ " P\n", "FECHA_HORA \n", "2018-01-11 00:00:00 38.878\n", "2018-01-11 01:00:00 33.544\n", "2018-01-11 02:00:00 32.477\n", "2018-01-11 03:00:00 32.498\n", "2018-01-11 04:00:00 32.659" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = pd.read_excel('precios_mexico_test.xlsx', index_col=\"FECHA_HORA\", names=['P'])\n", "data.head()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def procesing(df):\n", " ''' Adds lags and day_of_week and month columns to dataframe'''\n", " \n", " # Add Lags\n", " df_shifted = pd.concat([df]+[df['P'].shift(i) for i in range(24,49)]+[df['P'].shift(i) for i in range(168,193)], axis=1)\n", " df_shifted.columns = ['P']+['Ph-{}'.format(i) for i in range(24,49)] + ['Ph-{}'.format(i) for i in range(168,193)]\n", " \n", " # Add day_of_week column\n", " df_shifted['day_of_week'] = df.index.weekday_name\n", " \n", " # Add month abbreviature column\n", " df_shifted['month'] = df_shifted.index.month\n", " df_shifted['month'] = df_shifted['month'].apply(lambda x: calendar.month_abbr[x])\n", " \n", " # Add one-hot Encoding\n", " df = pd.get_dummies(df_shifted)\n", " \n", " return df.dropna()" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PRECIO
FECHA_HORA
2019-01-11 00:00:0064.452
2019-01-11 01:00:0056.638
2019-01-11 02:00:0048.571
2019-01-11 03:00:0047.260
2019-01-11 04:00:0046.103
2019-01-11 05:00:0055.939
2019-01-11 06:00:0067.026
2019-01-11 07:00:0076.771
2019-01-11 08:00:0083.542
2019-01-11 09:00:0089.540
2019-01-11 10:00:0086.793
2019-01-11 11:00:0090.080
2019-01-11 12:00:0088.869
2019-01-11 13:00:0090.831
2019-01-11 14:00:0090.831
2019-01-11 15:00:0086.253
2019-01-11 16:00:0086.388
2019-01-11 17:00:0090.831
2019-01-11 18:00:00101.183
2019-01-11 19:00:00102.504
2019-01-11 20:00:0098.774
2019-01-11 21:00:0087.426
2019-01-11 22:00:0085.978
2019-01-11 23:00:0085.158
\n", "
" ], "text/plain": [ " PRECIO\n", "FECHA_HORA \n", "2019-01-11 00:00:00 64.452\n", "2019-01-11 01:00:00 56.638\n", "2019-01-11 02:00:00 48.571\n", "2019-01-11 03:00:00 47.260\n", "2019-01-11 04:00:00 46.103\n", "2019-01-11 05:00:00 55.939\n", "2019-01-11 06:00:00 67.026\n", "2019-01-11 07:00:00 76.771\n", "2019-01-11 08:00:00 83.542\n", "2019-01-11 09:00:00 89.540\n", "2019-01-11 10:00:00 86.793\n", "2019-01-11 11:00:00 90.080\n", "2019-01-11 12:00:00 88.869\n", "2019-01-11 13:00:00 90.831\n", "2019-01-11 14:00:00 90.831\n", "2019-01-11 15:00:00 86.253\n", "2019-01-11 16:00:00 86.388\n", "2019-01-11 17:00:00 90.831\n", "2019-01-11 18:00:00 101.183\n", "2019-01-11 19:00:00 102.504\n", "2019-01-11 20:00:00 98.774\n", "2019-01-11 21:00:00 87.426\n", "2019-01-11 22:00:00 85.978\n", "2019-01-11 23:00:00 85.158" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.tail(24)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "import datetime" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "base = datetime.datetime(2019, 1, 12)\n", "date_arr = np.array([base + datetime.timedelta(hours=i) for i in range(24)])" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "df = pd.DataFrame(np.zeros(24), date_arr, columns=['P'])" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
P
FECHA_HORA
2019-01-12 00:00:000.0
2019-01-12 01:00:000.0
2019-01-12 02:00:000.0
2019-01-12 03:00:000.0
2019-01-12 04:00:000.0
2019-01-12 05:00:000.0
2019-01-12 06:00:000.0
2019-01-12 07:00:000.0
2019-01-12 08:00:000.0
2019-01-12 09:00:000.0
2019-01-12 10:00:000.0
2019-01-12 11:00:000.0
2019-01-12 12:00:000.0
2019-01-12 13:00:000.0
2019-01-12 14:00:000.0
2019-01-12 15:00:000.0
2019-01-12 16:00:000.0
2019-01-12 17:00:000.0
2019-01-12 18:00:000.0
2019-01-12 19:00:000.0
2019-01-12 20:00:000.0
2019-01-12 21:00:000.0
2019-01-12 22:00:000.0
2019-01-12 23:00:000.0
\n", "
" ], "text/plain": [ " P\n", "FECHA_HORA \n", "2019-01-12 00:00:00 0.0\n", "2019-01-12 01:00:00 0.0\n", "2019-01-12 02:00:00 0.0\n", "2019-01-12 03:00:00 0.0\n", "2019-01-12 04:00:00 0.0\n", "2019-01-12 05:00:00 0.0\n", "2019-01-12 06:00:00 0.0\n", "2019-01-12 07:00:00 0.0\n", "2019-01-12 08:00:00 0.0\n", "2019-01-12 09:00:00 0.0\n", "2019-01-12 10:00:00 0.0\n", "2019-01-12 11:00:00 0.0\n", "2019-01-12 12:00:00 0.0\n", "2019-01-12 13:00:00 0.0\n", "2019-01-12 14:00:00 0.0\n", "2019-01-12 15:00:00 0.0\n", "2019-01-12 16:00:00 0.0\n", "2019-01-12 17:00:00 0.0\n", "2019-01-12 18:00:00 0.0\n", "2019-01-12 19:00:00 0.0\n", "2019-01-12 20:00:00 0.0\n", "2019-01-12 21:00:00 0.0\n", "2019-01-12 22:00:00 0.0\n", "2019-01-12 23:00:00 0.0" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.index.name = \"FECHA_HORA\"\n", "df" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
P
FECHA_HORA
2019-01-11 00:00:0064.452
2019-01-11 01:00:0056.638
2019-01-11 02:00:0048.571
2019-01-11 03:00:0047.260
2019-01-11 04:00:0046.103
2019-01-11 05:00:0055.939
2019-01-11 06:00:0067.026
2019-01-11 07:00:0076.771
2019-01-11 08:00:0083.542
2019-01-11 09:00:0089.540
2019-01-11 10:00:0086.793
2019-01-11 11:00:0090.080
2019-01-11 12:00:0088.869
2019-01-11 13:00:0090.831
2019-01-11 14:00:0090.831
2019-01-11 15:00:0086.253
2019-01-11 16:00:0086.388
2019-01-11 17:00:0090.831
2019-01-11 18:00:00101.183
2019-01-11 19:00:00102.504
2019-01-11 20:00:0098.774
2019-01-11 21:00:0087.426
2019-01-11 22:00:0085.978
2019-01-11 23:00:0085.158
2019-01-12 00:00:000.000
2019-01-12 01:00:000.000
2019-01-12 02:00:000.000
2019-01-12 03:00:000.000
2019-01-12 04:00:000.000
2019-01-12 05:00:000.000
2019-01-12 06:00:000.000
2019-01-12 07:00:000.000
2019-01-12 08:00:000.000
2019-01-12 09:00:000.000
2019-01-12 10:00:000.000
2019-01-12 11:00:000.000
2019-01-12 12:00:000.000
2019-01-12 13:00:000.000
2019-01-12 14:00:000.000
2019-01-12 15:00:000.000
2019-01-12 16:00:000.000
2019-01-12 17:00:000.000
2019-01-12 18:00:000.000
2019-01-12 19:00:000.000
2019-01-12 20:00:000.000
2019-01-12 21:00:000.000
2019-01-12 22:00:000.000
2019-01-12 23:00:000.000
\n", "
" ], "text/plain": [ " P\n", "FECHA_HORA \n", "2019-01-11 00:00:00 64.452\n", "2019-01-11 01:00:00 56.638\n", "2019-01-11 02:00:00 48.571\n", "2019-01-11 03:00:00 47.260\n", "2019-01-11 04:00:00 46.103\n", "2019-01-11 05:00:00 55.939\n", "2019-01-11 06:00:00 67.026\n", "2019-01-11 07:00:00 76.771\n", "2019-01-11 08:00:00 83.542\n", "2019-01-11 09:00:00 89.540\n", "2019-01-11 10:00:00 86.793\n", "2019-01-11 11:00:00 90.080\n", "2019-01-11 12:00:00 88.869\n", "2019-01-11 13:00:00 90.831\n", "2019-01-11 14:00:00 90.831\n", "2019-01-11 15:00:00 86.253\n", "2019-01-11 16:00:00 86.388\n", "2019-01-11 17:00:00 90.831\n", "2019-01-11 18:00:00 101.183\n", "2019-01-11 19:00:00 102.504\n", "2019-01-11 20:00:00 98.774\n", "2019-01-11 21:00:00 87.426\n", "2019-01-11 22:00:00 85.978\n", "2019-01-11 23:00:00 85.158\n", "2019-01-12 00:00:00 0.000\n", "2019-01-12 01:00:00 0.000\n", "2019-01-12 02:00:00 0.000\n", "2019-01-12 03:00:00 0.000\n", "2019-01-12 04:00:00 0.000\n", "2019-01-12 05:00:00 0.000\n", "2019-01-12 06:00:00 0.000\n", "2019-01-12 07:00:00 0.000\n", "2019-01-12 08:00:00 0.000\n", "2019-01-12 09:00:00 0.000\n", "2019-01-12 10:00:00 0.000\n", "2019-01-12 11:00:00 0.000\n", "2019-01-12 12:00:00 0.000\n", "2019-01-12 13:00:00 0.000\n", "2019-01-12 14:00:00 0.000\n", "2019-01-12 15:00:00 0.000\n", "2019-01-12 16:00:00 0.000\n", "2019-01-12 17:00:00 0.000\n", "2019-01-12 18:00:00 0.000\n", "2019-01-12 19:00:00 0.000\n", "2019-01-12 20:00:00 0.000\n", "2019-01-12 21:00:00 0.000\n", "2019-01-12 22:00:00 0.000\n", "2019-01-12 23:00:00 0.000" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_a = data.append(df)\n", "data_a.tail(48)" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PPh-24Ph-25Ph-26Ph-27Ph-28Ph-29Ph-30Ph-31Ph-32...month_Decmonth_Febmonth_Janmonth_Julmonth_Junmonth_Marmonth_Maymonth_Novmonth_Octmonth_Sep
FECHA_HORA
2019-01-12 00:00:000.064.45265.68267.30768.01071.21272.73470.20767.97765.774...0010000000
2019-01-12 01:00:000.056.63864.45265.68267.30768.01071.21272.73470.20767.977...0010000000
2019-01-12 02:00:000.048.57156.63864.45265.68267.30768.01071.21272.73470.207...0010000000
2019-01-12 03:00:000.047.26048.57156.63864.45265.68267.30768.01071.21272.734...0010000000
2019-01-12 04:00:000.046.10347.26048.57156.63864.45265.68267.30768.01071.212...0010000000
2019-01-12 05:00:000.055.93946.10347.26048.57156.63864.45265.68267.30768.010...0010000000
2019-01-12 06:00:000.067.02655.93946.10347.26048.57156.63864.45265.68267.307...0010000000
2019-01-12 07:00:000.076.77167.02655.93946.10347.26048.57156.63864.45265.682...0010000000
2019-01-12 08:00:000.083.54276.77167.02655.93946.10347.26048.57156.63864.452...0010000000
2019-01-12 09:00:000.089.54083.54276.77167.02655.93946.10347.26048.57156.638...0010000000
2019-01-12 10:00:000.086.79389.54083.54276.77167.02655.93946.10347.26048.571...0010000000
2019-01-12 11:00:000.090.08086.79389.54083.54276.77167.02655.93946.10347.260...0010000000
2019-01-12 12:00:000.088.86990.08086.79389.54083.54276.77167.02655.93946.103...0010000000
2019-01-12 13:00:000.090.83188.86990.08086.79389.54083.54276.77167.02655.939...0010000000
2019-01-12 14:00:000.090.83190.83188.86990.08086.79389.54083.54276.77167.026...0010000000
2019-01-12 15:00:000.086.25390.83190.83188.86990.08086.79389.54083.54276.771...0010000000
2019-01-12 16:00:000.086.38886.25390.83190.83188.86990.08086.79389.54083.542...0010000000
2019-01-12 17:00:000.090.83186.38886.25390.83190.83188.86990.08086.79389.540...0010000000
2019-01-12 18:00:000.0101.18390.83186.38886.25390.83190.83188.86990.08086.793...0010000000
2019-01-12 19:00:000.0102.504101.18390.83186.38886.25390.83190.83188.86990.080...0010000000
2019-01-12 20:00:000.098.774102.504101.18390.83186.38886.25390.83190.83188.869...0010000000
2019-01-12 21:00:000.087.42698.774102.504101.18390.83186.38886.25390.83190.831...0010000000
2019-01-12 22:00:000.085.97887.42698.774102.504101.18390.83186.38886.25390.831...0010000000
2019-01-12 23:00:000.085.15885.97887.42698.774102.504101.18390.83186.38886.253...0010000000
\n", "

24 rows × 70 columns

\n", "
" ], "text/plain": [ " P Ph-24 Ph-25 Ph-26 Ph-27 Ph-28 \\\n", "FECHA_HORA \n", "2019-01-12 00:00:00 0.0 64.452 65.682 67.307 68.010 71.212 \n", "2019-01-12 01:00:00 0.0 56.638 64.452 65.682 67.307 68.010 \n", "2019-01-12 02:00:00 0.0 48.571 56.638 64.452 65.682 67.307 \n", "2019-01-12 03:00:00 0.0 47.260 48.571 56.638 64.452 65.682 \n", "2019-01-12 04:00:00 0.0 46.103 47.260 48.571 56.638 64.452 \n", "2019-01-12 05:00:00 0.0 55.939 46.103 47.260 48.571 56.638 \n", "2019-01-12 06:00:00 0.0 67.026 55.939 46.103 47.260 48.571 \n", "2019-01-12 07:00:00 0.0 76.771 67.026 55.939 46.103 47.260 \n", "2019-01-12 08:00:00 0.0 83.542 76.771 67.026 55.939 46.103 \n", "2019-01-12 09:00:00 0.0 89.540 83.542 76.771 67.026 55.939 \n", "2019-01-12 10:00:00 0.0 86.793 89.540 83.542 76.771 67.026 \n", "2019-01-12 11:00:00 0.0 90.080 86.793 89.540 83.542 76.771 \n", "2019-01-12 12:00:00 0.0 88.869 90.080 86.793 89.540 83.542 \n", "2019-01-12 13:00:00 0.0 90.831 88.869 90.080 86.793 89.540 \n", "2019-01-12 14:00:00 0.0 90.831 90.831 88.869 90.080 86.793 \n", "2019-01-12 15:00:00 0.0 86.253 90.831 90.831 88.869 90.080 \n", "2019-01-12 16:00:00 0.0 86.388 86.253 90.831 90.831 88.869 \n", "2019-01-12 17:00:00 0.0 90.831 86.388 86.253 90.831 90.831 \n", "2019-01-12 18:00:00 0.0 101.183 90.831 86.388 86.253 90.831 \n", "2019-01-12 19:00:00 0.0 102.504 101.183 90.831 86.388 86.253 \n", "2019-01-12 20:00:00 0.0 98.774 102.504 101.183 90.831 86.388 \n", "2019-01-12 21:00:00 0.0 87.426 98.774 102.504 101.183 90.831 \n", "2019-01-12 22:00:00 0.0 85.978 87.426 98.774 102.504 101.183 \n", "2019-01-12 23:00:00 0.0 85.158 85.978 87.426 98.774 102.504 \n", "\n", " Ph-29 Ph-30 Ph-31 Ph-32 ... month_Dec \\\n", "FECHA_HORA ... \n", "2019-01-12 00:00:00 72.734 70.207 67.977 65.774 ... 0 \n", "2019-01-12 01:00:00 71.212 72.734 70.207 67.977 ... 0 \n", "2019-01-12 02:00:00 68.010 71.212 72.734 70.207 ... 0 \n", "2019-01-12 03:00:00 67.307 68.010 71.212 72.734 ... 0 \n", "2019-01-12 04:00:00 65.682 67.307 68.010 71.212 ... 0 \n", "2019-01-12 05:00:00 64.452 65.682 67.307 68.010 ... 0 \n", "2019-01-12 06:00:00 56.638 64.452 65.682 67.307 ... 0 \n", "2019-01-12 07:00:00 48.571 56.638 64.452 65.682 ... 0 \n", "2019-01-12 08:00:00 47.260 48.571 56.638 64.452 ... 0 \n", "2019-01-12 09:00:00 46.103 47.260 48.571 56.638 ... 0 \n", "2019-01-12 10:00:00 55.939 46.103 47.260 48.571 ... 0 \n", "2019-01-12 11:00:00 67.026 55.939 46.103 47.260 ... 0 \n", "2019-01-12 12:00:00 76.771 67.026 55.939 46.103 ... 0 \n", "2019-01-12 13:00:00 83.542 76.771 67.026 55.939 ... 0 \n", "2019-01-12 14:00:00 89.540 83.542 76.771 67.026 ... 0 \n", "2019-01-12 15:00:00 86.793 89.540 83.542 76.771 ... 0 \n", "2019-01-12 16:00:00 90.080 86.793 89.540 83.542 ... 0 \n", "2019-01-12 17:00:00 88.869 90.080 86.793 89.540 ... 0 \n", "2019-01-12 18:00:00 90.831 88.869 90.080 86.793 ... 0 \n", "2019-01-12 19:00:00 90.831 90.831 88.869 90.080 ... 0 \n", "2019-01-12 20:00:00 86.253 90.831 90.831 88.869 ... 0 \n", "2019-01-12 21:00:00 86.388 86.253 90.831 90.831 ... 0 \n", "2019-01-12 22:00:00 90.831 86.388 86.253 90.831 ... 0 \n", "2019-01-12 23:00:00 101.183 90.831 86.388 86.253 ... 0 \n", "\n", " month_Feb month_Jan month_Jul month_Jun month_Mar \\\n", "FECHA_HORA \n", "2019-01-12 00:00:00 0 1 0 0 0 \n", "2019-01-12 01:00:00 0 1 0 0 0 \n", "2019-01-12 02:00:00 0 1 0 0 0 \n", "2019-01-12 03:00:00 0 1 0 0 0 \n", "2019-01-12 04:00:00 0 1 0 0 0 \n", "2019-01-12 05:00:00 0 1 0 0 0 \n", "2019-01-12 06:00:00 0 1 0 0 0 \n", "2019-01-12 07:00:00 0 1 0 0 0 \n", "2019-01-12 08:00:00 0 1 0 0 0 \n", "2019-01-12 09:00:00 0 1 0 0 0 \n", "2019-01-12 10:00:00 0 1 0 0 0 \n", "2019-01-12 11:00:00 0 1 0 0 0 \n", "2019-01-12 12:00:00 0 1 0 0 0 \n", "2019-01-12 13:00:00 0 1 0 0 0 \n", "2019-01-12 14:00:00 0 1 0 0 0 \n", "2019-01-12 15:00:00 0 1 0 0 0 \n", "2019-01-12 16:00:00 0 1 0 0 0 \n", "2019-01-12 17:00:00 0 1 0 0 0 \n", "2019-01-12 18:00:00 0 1 0 0 0 \n", "2019-01-12 19:00:00 0 1 0 0 0 \n", "2019-01-12 20:00:00 0 1 0 0 0 \n", "2019-01-12 21:00:00 0 1 0 0 0 \n", "2019-01-12 22:00:00 0 1 0 0 0 \n", "2019-01-12 23:00:00 0 1 0 0 0 \n", "\n", " month_May month_Nov month_Oct month_Sep \n", "FECHA_HORA \n", "2019-01-12 00:00:00 0 0 0 0 \n", "2019-01-12 01:00:00 0 0 0 0 \n", "2019-01-12 02:00:00 0 0 0 0 \n", "2019-01-12 03:00:00 0 0 0 0 \n", "2019-01-12 04:00:00 0 0 0 0 \n", "2019-01-12 05:00:00 0 0 0 0 \n", "2019-01-12 06:00:00 0 0 0 0 \n", "2019-01-12 07:00:00 0 0 0 0 \n", "2019-01-12 08:00:00 0 0 0 0 \n", "2019-01-12 09:00:00 0 0 0 0 \n", "2019-01-12 10:00:00 0 0 0 0 \n", "2019-01-12 11:00:00 0 0 0 0 \n", "2019-01-12 12:00:00 0 0 0 0 \n", "2019-01-12 13:00:00 0 0 0 0 \n", "2019-01-12 14:00:00 0 0 0 0 \n", "2019-01-12 15:00:00 0 0 0 0 \n", "2019-01-12 16:00:00 0 0 0 0 \n", "2019-01-12 17:00:00 0 0 0 0 \n", "2019-01-12 18:00:00 0 0 0 0 \n", "2019-01-12 19:00:00 0 0 0 0 \n", "2019-01-12 20:00:00 0 0 0 0 \n", "2019-01-12 21:00:00 0 0 0 0 \n", "2019-01-12 22:00:00 0 0 0 0 \n", "2019-01-12 23:00:00 0 0 0 0 \n", "\n", "[24 rows x 70 columns]" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = procesing(data_a)\n", "data.tail(24)" ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [], "source": [ "X = data['2019-01-01':'2019-01-11'].drop('P', axis=1)" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Ph-24Ph-25Ph-26Ph-27Ph-28Ph-29Ph-30Ph-31Ph-32Ph-33...month_Decmonth_Febmonth_Janmonth_Julmonth_Junmonth_Marmonth_Maymonth_Novmonth_Octmonth_Sep
FECHA_HORA
2019-01-10 00:00:0055.63176.99581.01188.59787.297103.09287.32983.05680.49583.367...0010000000
2019-01-10 01:00:0048.47555.63176.99581.01188.59787.297103.09287.32983.05680.495...0010000000
2019-01-10 02:00:0043.34048.47555.63176.99581.01188.59787.297103.09287.32983.056...0010000000
2019-01-10 03:00:0034.09443.34048.47555.63176.99581.01188.59787.297103.09287.329...0010000000
2019-01-10 04:00:0040.62634.09443.34048.47555.63176.99581.01188.59787.297103.092...0010000000
2019-01-10 05:00:0046.58640.62634.09443.34048.47555.63176.99581.01188.59787.297...0010000000
2019-01-10 06:00:0059.81846.58640.62634.09443.34048.47555.63176.99581.01188.597...0010000000
2019-01-10 07:00:0070.44359.81846.58640.62634.09443.34048.47555.63176.99581.011...0010000000
2019-01-10 08:00:0075.76070.44359.81846.58640.62634.09443.34048.47555.63176.995...0010000000
2019-01-10 09:00:0076.82675.76070.44359.81846.58640.62634.09443.34048.47555.631...0010000000
2019-01-10 10:00:0077.87576.82675.76070.44359.81846.58640.62634.09443.34048.475...0010000000
2019-01-10 11:00:0077.91177.87576.82675.76070.44359.81846.58640.62634.09443.340...0010000000
2019-01-10 12:00:0076.23077.91177.87576.82675.76070.44359.81846.58640.62634.094...0010000000
2019-01-10 13:00:0075.99676.23077.91177.87576.82675.76070.44359.81846.58640.626...0010000000
2019-01-10 14:00:0076.71275.99676.23077.91177.87576.82675.76070.44359.81846.586...0010000000
2019-01-10 15:00:0078.24176.71275.99676.23077.91177.87576.82675.76070.44359.818...0010000000
2019-01-10 16:00:0076.14478.24176.71275.99676.23077.91177.87576.82675.76070.443...0010000000
2019-01-10 17:00:0078.00976.14478.24176.71275.99676.23077.91177.87576.82675.760...0010000000
2019-01-10 18:00:0078.21278.00976.14478.24176.71275.99676.23077.91177.87576.826...0010000000
2019-01-10 19:00:0079.34378.21278.00976.14478.24176.71275.99676.23077.91177.875...0010000000
2019-01-10 20:00:0078.75679.34378.21278.00976.14478.24176.71275.99676.23077.911...0010000000
2019-01-10 21:00:0079.88678.75679.34378.21278.00976.14478.24176.71275.99676.230...0010000000
2019-01-10 22:00:0074.80379.88678.75679.34378.21278.00976.14478.24176.71275.996...0010000000
2019-01-10 23:00:0069.40474.80379.88678.75679.34378.21278.00976.14478.24176.712...0010000000
\n", "

24 rows × 69 columns

\n", "
" ], "text/plain": [ " Ph-24 Ph-25 Ph-26 Ph-27 Ph-28 Ph-29 Ph-30 \\\n", "FECHA_HORA \n", "2019-01-10 00:00:00 55.631 76.995 81.011 88.597 87.297 103.092 87.329 \n", "2019-01-10 01:00:00 48.475 55.631 76.995 81.011 88.597 87.297 103.092 \n", "2019-01-10 02:00:00 43.340 48.475 55.631 76.995 81.011 88.597 87.297 \n", "2019-01-10 03:00:00 34.094 43.340 48.475 55.631 76.995 81.011 88.597 \n", "2019-01-10 04:00:00 40.626 34.094 43.340 48.475 55.631 76.995 81.011 \n", "2019-01-10 05:00:00 46.586 40.626 34.094 43.340 48.475 55.631 76.995 \n", "2019-01-10 06:00:00 59.818 46.586 40.626 34.094 43.340 48.475 55.631 \n", "2019-01-10 07:00:00 70.443 59.818 46.586 40.626 34.094 43.340 48.475 \n", "2019-01-10 08:00:00 75.760 70.443 59.818 46.586 40.626 34.094 43.340 \n", "2019-01-10 09:00:00 76.826 75.760 70.443 59.818 46.586 40.626 34.094 \n", "2019-01-10 10:00:00 77.875 76.826 75.760 70.443 59.818 46.586 40.626 \n", "2019-01-10 11:00:00 77.911 77.875 76.826 75.760 70.443 59.818 46.586 \n", "2019-01-10 12:00:00 76.230 77.911 77.875 76.826 75.760 70.443 59.818 \n", "2019-01-10 13:00:00 75.996 76.230 77.911 77.875 76.826 75.760 70.443 \n", "2019-01-10 14:00:00 76.712 75.996 76.230 77.911 77.875 76.826 75.760 \n", "2019-01-10 15:00:00 78.241 76.712 75.996 76.230 77.911 77.875 76.826 \n", "2019-01-10 16:00:00 76.144 78.241 76.712 75.996 76.230 77.911 77.875 \n", "2019-01-10 17:00:00 78.009 76.144 78.241 76.712 75.996 76.230 77.911 \n", "2019-01-10 18:00:00 78.212 78.009 76.144 78.241 76.712 75.996 76.230 \n", "2019-01-10 19:00:00 79.343 78.212 78.009 76.144 78.241 76.712 75.996 \n", "2019-01-10 20:00:00 78.756 79.343 78.212 78.009 76.144 78.241 76.712 \n", "2019-01-10 21:00:00 79.886 78.756 79.343 78.212 78.009 76.144 78.241 \n", "2019-01-10 22:00:00 74.803 79.886 78.756 79.343 78.212 78.009 76.144 \n", "2019-01-10 23:00:00 69.404 74.803 79.886 78.756 79.343 78.212 78.009 \n", "\n", " Ph-31 Ph-32 Ph-33 ... month_Dec \\\n", "FECHA_HORA ... \n", "2019-01-10 00:00:00 83.056 80.495 83.367 ... 0 \n", "2019-01-10 01:00:00 87.329 83.056 80.495 ... 0 \n", "2019-01-10 02:00:00 103.092 87.329 83.056 ... 0 \n", "2019-01-10 03:00:00 87.297 103.092 87.329 ... 0 \n", "2019-01-10 04:00:00 88.597 87.297 103.092 ... 0 \n", "2019-01-10 05:00:00 81.011 88.597 87.297 ... 0 \n", "2019-01-10 06:00:00 76.995 81.011 88.597 ... 0 \n", "2019-01-10 07:00:00 55.631 76.995 81.011 ... 0 \n", "2019-01-10 08:00:00 48.475 55.631 76.995 ... 0 \n", "2019-01-10 09:00:00 43.340 48.475 55.631 ... 0 \n", "2019-01-10 10:00:00 34.094 43.340 48.475 ... 0 \n", "2019-01-10 11:00:00 40.626 34.094 43.340 ... 0 \n", "2019-01-10 12:00:00 46.586 40.626 34.094 ... 0 \n", "2019-01-10 13:00:00 59.818 46.586 40.626 ... 0 \n", "2019-01-10 14:00:00 70.443 59.818 46.586 ... 0 \n", "2019-01-10 15:00:00 75.760 70.443 59.818 ... 0 \n", "2019-01-10 16:00:00 76.826 75.760 70.443 ... 0 \n", "2019-01-10 17:00:00 77.875 76.826 75.760 ... 0 \n", "2019-01-10 18:00:00 77.911 77.875 76.826 ... 0 \n", "2019-01-10 19:00:00 76.230 77.911 77.875 ... 0 \n", "2019-01-10 20:00:00 75.996 76.230 77.911 ... 0 \n", "2019-01-10 21:00:00 76.712 75.996 76.230 ... 0 \n", "2019-01-10 22:00:00 78.241 76.712 75.996 ... 0 \n", "2019-01-10 23:00:00 76.144 78.241 76.712 ... 0 \n", "\n", " month_Feb month_Jan month_Jul month_Jun month_Mar \\\n", "FECHA_HORA \n", "2019-01-10 00:00:00 0 1 0 0 0 \n", "2019-01-10 01:00:00 0 1 0 0 0 \n", "2019-01-10 02:00:00 0 1 0 0 0 \n", "2019-01-10 03:00:00 0 1 0 0 0 \n", "2019-01-10 04:00:00 0 1 0 0 0 \n", "2019-01-10 05:00:00 0 1 0 0 0 \n", "2019-01-10 06:00:00 0 1 0 0 0 \n", "2019-01-10 07:00:00 0 1 0 0 0 \n", "2019-01-10 08:00:00 0 1 0 0 0 \n", "2019-01-10 09:00:00 0 1 0 0 0 \n", "2019-01-10 10:00:00 0 1 0 0 0 \n", "2019-01-10 11:00:00 0 1 0 0 0 \n", "2019-01-10 12:00:00 0 1 0 0 0 \n", "2019-01-10 13:00:00 0 1 0 0 0 \n", "2019-01-10 14:00:00 0 1 0 0 0 \n", "2019-01-10 15:00:00 0 1 0 0 0 \n", "2019-01-10 16:00:00 0 1 0 0 0 \n", "2019-01-10 17:00:00 0 1 0 0 0 \n", "2019-01-10 18:00:00 0 1 0 0 0 \n", "2019-01-10 19:00:00 0 1 0 0 0 \n", "2019-01-10 20:00:00 0 1 0 0 0 \n", "2019-01-10 21:00:00 0 1 0 0 0 \n", "2019-01-10 22:00:00 0 1 0 0 0 \n", "2019-01-10 23:00:00 0 1 0 0 0 \n", "\n", " month_May month_Nov month_Oct month_Sep \n", "FECHA_HORA \n", "2019-01-10 00:00:00 0 0 0 0 \n", "2019-01-10 01:00:00 0 0 0 0 \n", "2019-01-10 02:00:00 0 0 0 0 \n", "2019-01-10 03:00:00 0 0 0 0 \n", "2019-01-10 04:00:00 0 0 0 0 \n", "2019-01-10 05:00:00 0 0 0 0 \n", "2019-01-10 06:00:00 0 0 0 0 \n", "2019-01-10 07:00:00 0 0 0 0 \n", "2019-01-10 08:00:00 0 0 0 0 \n", "2019-01-10 09:00:00 0 0 0 0 \n", "2019-01-10 10:00:00 0 0 0 0 \n", "2019-01-10 11:00:00 0 0 0 0 \n", "2019-01-10 12:00:00 0 0 0 0 \n", "2019-01-10 13:00:00 0 0 0 0 \n", "2019-01-10 14:00:00 0 0 0 0 \n", "2019-01-10 15:00:00 0 0 0 0 \n", "2019-01-10 16:00:00 0 0 0 0 \n", "2019-01-10 17:00:00 0 0 0 0 \n", "2019-01-10 18:00:00 0 0 0 0 \n", "2019-01-10 19:00:00 0 0 0 0 \n", "2019-01-10 20:00:00 0 0 0 0 \n", "2019-01-10 21:00:00 0 0 0 0 \n", "2019-01-10 22:00:00 0 0 0 0 \n", "2019-01-10 23:00:00 0 0 0 0 \n", "\n", "[24 rows x 69 columns]" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(24, 69)" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X.shape" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": true }, "outputs": [], "source": [ "model = pickle.load(open(\"lbrprice_model_rgs.pkl\",\"rb\"))" ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "collapsed": true }, "outputs": [], "source": [ "pred = model.predict(X)" ] }, { "cell_type": "code", "execution_count": 94, "metadata": {}, "outputs": [], "source": [ "dateRange = pd.date_range('2019-01-01', '2019-01-12', freq='H').to_series()" ] }, { "cell_type": "code", "execution_count": 100, "metadata": {}, "outputs": [ { "data": { "application/javascript": [ "/* Put everything inside the global mpl namespace */\n", "window.mpl = {};\n", "\n", "\n", "mpl.get_websocket_type = function() {\n", " if (typeof(WebSocket) !== 'undefined') {\n", " return WebSocket;\n", " } else if (typeof(MozWebSocket) !== 'undefined') {\n", " return MozWebSocket;\n", " } else {\n", " alert('Your browser does not have WebSocket support.' +\n", " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", " 'Firefox 4 and 5 are also supported but you ' +\n", " 'have to enable WebSockets in about:config.');\n", " };\n", "}\n", "\n", "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", " this.id = figure_id;\n", "\n", " this.ws = websocket;\n", "\n", " this.supports_binary = (this.ws.binaryType != undefined);\n", "\n", " if (!this.supports_binary) {\n", " var warnings = document.getElementById(\"mpl-warnings\");\n", " if (warnings) {\n", " warnings.style.display = 'block';\n", " warnings.textContent = (\n", " \"This browser does not support binary websocket messages. \" +\n", " \"Performance may be slow.\");\n", " }\n", " }\n", "\n", " this.imageObj = new Image();\n", "\n", " this.context = undefined;\n", " this.message = undefined;\n", " this.canvas = undefined;\n", " this.rubberband_canvas = undefined;\n", " this.rubberband_context = undefined;\n", " this.format_dropdown = undefined;\n", "\n", " this.image_mode = 'full';\n", "\n", " this.root = $('
');\n", " this._root_extra_style(this.root)\n", " this.root.attr('style', 'display: inline-block');\n", "\n", " $(parent_element).append(this.root);\n", "\n", " this._init_header(this);\n", " this._init_canvas(this);\n", " this._init_toolbar(this);\n", "\n", " var fig = this;\n", "\n", " this.waiting = false;\n", "\n", " this.ws.onopen = function () {\n", " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", " fig.send_message(\"send_image_mode\", {});\n", " if (mpl.ratio != 1) {\n", " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", " }\n", " fig.send_message(\"refresh\", {});\n", " }\n", "\n", " this.imageObj.onload = function() {\n", " if (fig.image_mode == 'full') {\n", " // Full images could contain transparency (where diff images\n", " // almost always do), so we need to clear the canvas so that\n", " // there is no ghosting.\n", " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", " }\n", " fig.context.drawImage(fig.imageObj, 0, 0);\n", " };\n", "\n", " this.imageObj.onunload = function() {\n", " fig.ws.close();\n", " }\n", "\n", " this.ws.onmessage = this._make_on_message_function(this);\n", "\n", " this.ondownload = ondownload;\n", "}\n", "\n", "mpl.figure.prototype._init_header = function() {\n", " var titlebar = $(\n", " '
');\n", " var titletext = $(\n", " '
');\n", " titlebar.append(titletext)\n", " this.root.append(titlebar);\n", " this.header = titletext[0];\n", "}\n", "\n", "\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "\n", "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "mpl.figure.prototype._init_canvas = function() {\n", " var fig = this;\n", "\n", " var canvas_div = $('
');\n", "\n", " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", "\n", " function canvas_keyboard_event(event) {\n", " return fig.key_event(event, event['data']);\n", " }\n", "\n", " canvas_div.keydown('key_press', canvas_keyboard_event);\n", " canvas_div.keyup('key_release', canvas_keyboard_event);\n", " this.canvas_div = canvas_div\n", " this._canvas_extra_style(canvas_div)\n", " this.root.append(canvas_div);\n", "\n", " var canvas = $('');\n", " canvas.addClass('mpl-canvas');\n", " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", "\n", " this.canvas = canvas[0];\n", " this.context = canvas[0].getContext(\"2d\");\n", "\n", " var backingStore = this.context.backingStorePixelRatio ||\n", "\tthis.context.webkitBackingStorePixelRatio ||\n", "\tthis.context.mozBackingStorePixelRatio ||\n", "\tthis.context.msBackingStorePixelRatio ||\n", "\tthis.context.oBackingStorePixelRatio ||\n", "\tthis.context.backingStorePixelRatio || 1;\n", "\n", " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", "\n", " var rubberband = $('');\n", " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", "\n", " var pass_mouse_events = true;\n", "\n", " canvas_div.resizable({\n", " start: function(event, ui) {\n", " pass_mouse_events = false;\n", " },\n", " resize: function(event, ui) {\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " stop: function(event, ui) {\n", " pass_mouse_events = true;\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " });\n", "\n", " function mouse_event_fn(event) {\n", " if (pass_mouse_events)\n", " return fig.mouse_event(event, event['data']);\n", " }\n", "\n", " rubberband.mousedown('button_press', mouse_event_fn);\n", " rubberband.mouseup('button_release', mouse_event_fn);\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband.mousemove('motion_notify', mouse_event_fn);\n", "\n", " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", "\n", " canvas_div.on(\"wheel\", function (event) {\n", " event = event.originalEvent;\n", " event['data'] = 'scroll'\n", " if (event.deltaY < 0) {\n", " event.step = 1;\n", " } else {\n", " event.step = -1;\n", " }\n", " mouse_event_fn(event);\n", " });\n", "\n", " canvas_div.append(canvas);\n", " canvas_div.append(rubberband);\n", "\n", " this.rubberband = rubberband;\n", " this.rubberband_canvas = rubberband[0];\n", " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", " this.rubberband_context.strokeStyle = \"#000000\";\n", "\n", " this._resize_canvas = function(width, height) {\n", " // Keep the size of the canvas, canvas container, and rubber band\n", " // canvas in synch.\n", " canvas_div.css('width', width)\n", " canvas_div.css('height', height)\n", "\n", " canvas.attr('width', width * mpl.ratio);\n", " canvas.attr('height', height * mpl.ratio);\n", " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", "\n", " rubberband.attr('width', width);\n", " rubberband.attr('height', height);\n", " }\n", "\n", " // Set the figure to an initial 600x600px, this will subsequently be updated\n", " // upon first draw.\n", " this._resize_canvas(600, 600);\n", "\n", " // Disable right mouse context menu.\n", " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", " return false;\n", " });\n", "\n", " function set_focus () {\n", " canvas.focus();\n", " canvas_div.focus();\n", " }\n", "\n", " window.setTimeout(set_focus, 100);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('
')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) {\n", " // put a spacer in here.\n", " continue;\n", " }\n", " var button = $('